Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 1;65(15):6631-9.
doi: 10.1158/0008-5472.CAN-05-0891.

A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E

Affiliations

A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E

Brian P Rubin et al. Cancer Res. .

Abstract

A mouse model of gastrointestinal stromal tumor (GIST) has been developed by a knock-in gene targeting strategy, which introduced a Kit gene K641E mutation, originally identified in sporadic human GISTs and in the germ line of familial GIST syndrome patients. Homozygous and heterozygous Kit K641E mice develop gastrointestinal pathology with complete penetrance and all Kit K641E homozygotes die by age 30 weeks due to gastrointestinal obstruction by hyperplastic interstitial cells of Cajal (ICC) or GISTs. Heterozygous mice have less extensive ICC hyperplasia and smaller GISTs, suggesting a dose-response relationship between oncogenically activated Kit and ICC proliferation. Immunoprecipitation and Western blotting reveal GISTs to contain abundant phosphorylated/activated Kit. In addition to ICC hyperplasia and GISTs, homozygous Kit K641E mice exhibit loss-of-function Kit phenotypes, including white coat color, decreased numbers of dermal mast cells, and sterility, indicating that despite its oncogenic activity the mutant form cannot accomplish many activities of the wild-type gene. Kit K641E reproduces the pathology associated with the familial GIST syndrome and thus is an excellent model to study Kit pathway activation, ICC biology, GIST pathogenesis, and preclinical validations of GIST therapies and mechanisms of drug resistance.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources