Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Oct 1;82(1):138-48.
doi: 10.1002/jnr.20610.

Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits

Affiliations
Comparative Study

Neuroprotective mechanisms of curcumin against cerebral ischemia-induced neuronal apoptosis and behavioral deficits

Qun Wang et al. J Neurosci Res. .

Abstract

Increased oxidative stress has been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In recent years, there has been increasing interest in investigating polyphenols from botanical source for possible neuroprotective effects against neurodegenerative diseases. In this study, we investigated the mechanisms underlying the neuroprotective effects of curcumin, a potent polyphenol antioxidant enriched in tumeric. Global cerebral ischemia was induced in Mongolian gerbils by transient occlusion of the common carotid arteries. Histochemical analysis indicated extensive neuronal death together with increased reactive astrocytes and microglial cells in the hippocampal CA1 area at 4 days after I/R. These ischemic changes were preceded by a rapid increase in lipid peroxidation and followed by decrease in mitochondrial membrane potential, increased cytochrome c release, and subsequently caspase-3 activation and apoptosis. Administration of curcumin by i.p. injections (30 mg/kg body wt) or by supplementation to the AIN76 diet (2.0 g/kg diet) for 2 months significantly attenuated ischemia-induced neuronal death as well as glial activation. Curcumin administration also decreased lipid peroxidation, mitochondrial dysfunction, and the apoptotic indices. The biochemical changes resulting from curcumin also correlated well with its ability to ameliorate the changes in locomotor activity induced by I/R. Bioavailability study indicated a rapid increase in curcumin in plasma and brain within 1 hr after treatment. Together, these findings attribute the neuroprotective effect of curcumin against I/R-induced neuronal damage to its antioxidant capacity in reducing oxidative stress and the signaling cascade leading to apoptotic cell death.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources