Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;35(9):2598-607.
doi: 10.1002/eji.200526077.

Antigen-dependent suppression of alloresponses by Foxp3-induced regulatory T cells in transplantation

Affiliations
Free article

Antigen-dependent suppression of alloresponses by Foxp3-induced regulatory T cells in transplantation

Michael H Albert et al. Eur J Immunol. 2005 Sep.
Free article

Abstract

Adoptive transfer of polyclonal CD4+CD25+ regulatory T cells (Treg) can tolerize transplantation alloresponses. Treg are activated via their specific TCR, but the antigen specificity of wild-type Treg remains elusive, and therefore controlling potency and duration of Treg activity in the transplantation setting is still not feasible. In this study, we used murine graft-versus-host disease (GVHD) as a model system to show that antigen-specific Treg suppress the response of T effector cells to alloantigens in vitro and prevent GVHD in vivo. The suppressive potential of antigen-specific Treg was much greater than that of polyclonal Treg. To acquire large numbers of antigen-specific Treg, we transduced CD4+CD25- cells with foxp3, and found that these foxp3-induced Treg suppress alloresponses in vitro and prevent GVHD in vivo as effectively as naturally derived CD4+CD25+ Treg. Furthermore, we used an antigen-specific CD4 Th1 clone as a source of foxp3-induced Treg after transduction with foxp3, and found those Treg to effectively prevent GVHD in an antigen-dependent manner. The findings of this study provide a basis for the concept that the onset and potency of the suppression by Treg can be regulated, and suggest a novel approach to enhance the feasibility and effectiveness of inducing tolerance by Treg as an adoptive immunotherapy in transplantation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources