Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 May;99(5):721-46.
doi: 10.1085/jgp.99.5.721.

Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system

Affiliations

Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system

H Mairbäurl et al. J Gen Physiol. 1992 May.

Abstract

This study is concerned with the relationship between the Na/K/Cl cotransport system and the steady-state volume (MCV) of red blood cells. Cotransport rate was determined in unfractionated and density-separated red cells of different MCV from different donors to see whether cotransport differences contribute to the difference in the distribution of MCVs. Cotransport, studied in cells at their original MCVs, was determined as the bumetanide (10 microM)-sensitive 22Na efflux in the presence of ouabain (50 microM) after adjusting cellular Na (Nai) and Ki to achieve near maximal transport rates. This condition was chosen to rule out MCV-related differences in Nai and Ki that might contribute to differences in the net chemical driving force for cotransport. We found that in both unfractionated and density-separated red cells the cotransport rate was inversely correlated with MCV. MCV was correlated directly with red cell 2,3-diphosphoglycerate (DPG), whereas total red cell Mg was only slightly elevated in cells with high MCV. Thus intracellular free Mg (Mgifree) is evidently lower in red cells with high 2,3-DPG (i.e., high MCV) and vice versa. Results from flux measurements at their original MCVs, after altering Mgifree with the ionophore A23187, indicated a high Mgi sensitivity of cotransport: depletion of Mgifree inhibited and an elevation of Mgifree increased the cotransport rate. The apparent K0.5 for Mgifree was approximately 0.4 mM. Maximizing Mgifree at optimum Nai and Ki minimized the differences in cotransport rates among the different donors. It is concluded that the relative cotransport rate is regulated for cells in the steady state at their original cell volume, not by the number of copies of the cotransporter but by differences in Mgifree. The interindividual differences in Mgifree, determined primarily by differences in the 2,3-DPG content, are responsible for the differences in the relative cotransport activity that results in an inverse relationship with in vivo differences in MCV. Indirect evidence indicates that the relative cotransport rate, as indexed by Mgifree, is determined by the phosphorylated level of the cotransport system.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Invest. 1959 Sep;38:1572-86 - PubMed
    1. J Cell Physiol. 1956 Apr;47(2):215-43 - PubMed
    1. Acta Haematol. 1964 Feb;31:65-78 - PubMed
    1. J Gen Physiol. 1960 Sep;44:169-94 - PubMed
    1. Biochim Biophys Acta. 1957 Jul;25(1):118-28 - PubMed

Publication types