Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Aug;186(2):251-71.
doi: 10.1677/joe.1.06019.

11beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action

Affiliations
Review

11beta-hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action

Nicole Draper et al. J Endocrinol. 2005 Aug.

Abstract

Two isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD1 and 11beta-HSD2) catalyse the interconversion of hormonally active cortisol and inactive cortisone. The enzyme evolved from a metabolic pathway to a novel mechanism underpinning human disease with the elucidation of the role of the type 2 or 'kidney' isozyme and an inherited form of hypertension, 'apparent mineralocorticoid excess'. 'Cushing's disease of the kidney' arises because of a failure of 11beta-HSD2 to inactivate cortisol to cortisone resulting in cortisol-induced mineralocorticoid excess.Conversely, 11beta-HSD1 has been linked to human obesity and insulin resistance, but also to other diseases in which glucocorticoids have historically been implicated (osteoporosis, glaucoma). Here, the activation of cortisol from cortisone facilitates glucocorticoid hormone action at an autocrine level. The molecular basis for the putative human 11beta-HSD1 'knockout'--'cortisone reductase deficiency'--has recently been described, an observation that also answers a long standing conundrum relating to the set-point of 11beta-HSD1 activity. In each case, these clinical studies have been underpinned by studies in vitro and the manipulation of enzyme expression in vivo using recombinant mouse models.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources