Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;151(Pt 8):2685-2692.
doi: 10.1099/mic.0.27947-0.

Mass flow and pressure-driven hyphal extension in Neurospora crassa

Affiliations
Free article

Mass flow and pressure-driven hyphal extension in Neurospora crassa

Roger R Lew. Microbiology (Reading). 2005 Aug.
Free article

Abstract

Mass flow of cytoplasm in Neurospora crassa trunk hyphae was directly confirmed by injecting oil droplets into the hyphae. The droplets move in a manner similar to cytoplasmic particles and vacuoles within the hyphae. The direction of mass flow is towards the growing hyphal tips at the colony edge. Based on flow velocities (about 5 microm s(-1)), hyphal radius and estimates of cytoplasm viscosity, the Reynolds number is about 10(-4), indicating that mass flow is laminar. Therefore, the Poiseulle equation can be used to calculate the pressure gradient required for mass flow: 0.0005-0.1 bar cm(-1) (depending on the values used for septal pore radius and cytoplasmic viscosity). These values are very small compared to the normal hydrostatic pressure of the hyphae (4-5 bar). Mass flow stops after respiratory inhibition with cyanide, or creation of an extracellular osmotic gradient. The flow is probably caused by internal osmotic gradients created by differential ion transport along the hyphae. Apical cytoplasm migrates at the same rate as tip extension, as do oil droplets injected near the tip. Thus, in addition to organelle positioning mediated by molecular motors, pressure-driven mass flow may be an integral part of hyphal extension.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources