Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Aug;125(8):617-29.
doi: 10.1248/yakushi.125.617.

[Binding Characterizations of Asp-hemolysin to Oxidized Low-Density Lipoprotein]

[Article in Japanese]
Affiliations
Free article
Review

[Binding Characterizations of Asp-hemolysin to Oxidized Low-Density Lipoprotein]

[Article in Japanese]
Yoichi Kudo. Yakugaku Zasshi. 2005 Aug.
Free article

Abstract

Oxidized low-density lipoprotein (Ox-LDL) is known to be involved in the generation and progression of atherosclerosis. Ox-LDL has a number of potentially atherogenic effects on vascular cells, including uncontrol uptake by scavenger receptors. Asp-hemolysin, a hemolytic toxin from Aspergillus fumigatus, is a binding protein for Ox-LDL. This study was undertaken to clarify the binding specificity of Asp-hemolysin to Ox-LDL. We examined the binding specificity of Asp-hemolysin to Ox-LDL using several modified lipoproteins and scavenger-receptor ligands. Asp-hemolysin bound to Ox-LDL with shorter LDL oxidation times. However, Asp-hemolysin did not bind to acetylated LDL. The native high-density lipoprotein (n-HDL) and modified HDL (e.g., acetylated HDL, oxidized HDL) also had no Asp-hemolysin binding. Inhibitors of scavenger-receptor binding, including maleylated bovine serum albumin, polyinosinic acid, dextran sulfate, and fucoidin, had no effect on the binding of Ox-LDL to Asp-hemolysin. Surface plasmon-resonance studies revealed that Ox-LDL binds with high affinity (K(D)=0.63 microg/ml) to Asp-hemolysin. Furthermore, we have shown that Ox-LDL strongly inhibits the hemolytic activity of Asp-hemolysin and that the removal of lysophosphatidylcholine (lysoPC) from Ox-LDL abolished the inhibition. We also investigated the interaction between Asp-hemolysin and lysoPC as a typical lipid moiety of Ox-LDL. The binding of Asp-hemolysin to LDL oxidized for different times depended on the lysoPC content in each Ox-LDL. In addition, the inhibition of lysoPC production in Ox-LDL by phenylmethylsulfonyl fluoride (PMSF) pretreatment of LDL resulted in a marked decrease in Asp-hemolysin binding to PMSF-pretreated Ox-LDL. The binding analysis of Asp-hemolysin to lysoPC revealed that Asp-hemolysin binds directly to lysoPC. We conclude that Asp-hemolysin is a specific binding protein with high affinity for Ox-LDL and that its binding specificity is distinct from any receptor for Ox-LDL.

PubMed Disclaimer

Similar articles