Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jul;57(7):483-90.
doi: 10.1080/15216540500147163.

Nuclear hormone receptor degradation and gene transcription: an update

Affiliations
Free article
Review

Nuclear hormone receptor degradation and gene transcription: an update

Ayesha Ismail et al. IUBMB Life. 2005 Jul.
Free article

Abstract

The ubiquitin-proteasome pathway (UPP) is known to degrade short-lived and misfolded proteins. Its role in cell cycle regulation and signal transduction is well established. However, the importance of the UPP in nuclear hormone receptor-regulated gene transcription is relatively new. Nuclear hormone receptors (NHRs) are degraded by the UPP both in the presence or absence of their cognate ligands. In recent years, it has become evident that NHR degradation and NHR-dependent transcription are interdependent processes. The link between these two processes has become stronger with the discovery of a number of ubiquitin-pathway enzymes and components of the proteasome acting as modulators of NHR function. Also, UPP enzymes and components of the proteasome are recruited to the promoters of NHR-responsive genes. Interestingly both coactivators and corepressors (coregulators) of NHRs are also targeted to the UPP for degradation. Furthermore, additional evidence also indicates that the UPP may be involved in the turnover of transcription complexes, thereby facilitating proper gene transcription. In this review we discuss and provide an update on the role of UPP in NHR-dependent gene regulation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources