Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Aug;4(8):1065-72.
Epub 2005 Aug 1.

Re-evaluating the role of Frat in Wnt-signal transduction

Affiliations
  • PMID: 16082208
Review

Re-evaluating the role of Frat in Wnt-signal transduction

Renée van Amerongen et al. Cell Cycle. 2005 Aug.

Abstract

Frat proteins are potent activators of canonical Wnt-signal transduction. By binding to GSK3, Frat prevents the phosphorylation and concomitant degradation of beta-catenin and allows the activation of downstream target genes by beta-catenin/TCF complexes. The identification of the Xenopus Frat homologue GBP as an essential component of the maternal Wnt-pathway during embryonic axis formation suggested that Frat might fulfill a similar role in higher vertebrates. As a result most, if not all, studies addressing Frat function have focused on its ability to bind GSK3 and induce signaling through beta-catenin/TCF. Consequently, Frat has been advocated as the "missing link" that bridged signaling from Dishevelled to GSK3 in the canonical Wnt-pathway. Recent mouse-knockout studies however, call for a reevaluation of the physiological role of Frat. Mice that lack all Frat-family members appear to be normal and display no obvious defects in beta-catenin/TCF signaling. This observation reopens the question as to how GSK3 activity is controlled in vertebrate canonical Wnt-signal transduction in view of the apparent dispensability of Frat. Here we will review the studies that have been conducted on Frat proteins to date, with a specific focus on those that implicate a role for Frat in Wnt-signal transduction. In addition, we will discuss potential alternatives for the endogenous function of Frat.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources