Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;13(2):202-11.
doi: 10.1038/sj.cdd.4401733.

Silencing of SH-PTP2 defines a crucial role in the inactivation of epidermal growth factor receptor by 5-aminosalicylic acid in colon cancer cells

Affiliations

Silencing of SH-PTP2 defines a crucial role in the inactivation of epidermal growth factor receptor by 5-aminosalicylic acid in colon cancer cells

G Monteleone et al. Cell Death Differ. 2006 Feb.

Abstract

Recent studies have suggested that 5-aminosalicylic acid (5-ASA) inhibits colorectal cancer (CRC) development. However, the mechanism underlying the antineoplastic effect of 5-ASA remains unknown. We here examined the effect of 5-ASA on epidermal growth factor receptor (EGFR) activation, a pathway that triggers mitogenic signals in CRC cells. We show that 5-ASA inhibits EGFR activation, through a mechanism that does not rely on CRC cell death induction. 5-ASA enhances the activity, but not expression, of phosphorylated (p)-EGFR-targeting phosphatases (PTPs), and treatment of cells with PTP inhibitors abrogates the 5-ASA-mediated EGFR dephosphorylation. Both SH-PTP1 and SH-PTP2 interact with EGFR upon 5-ASA treatment. However, knockdown of SH-PTP2 but not SH-PTP1 by small interference RNAs prevents the 5-ASA-induced EGFR dephosphorylation. Finally, we show that 5-ASA attenuates p-EGFR in ex vivo organ cultures of CRC explants. Data indicate that 5-ASA disrupts EGFR signalling by enhancing SH-PTP2 activity, and suggest a mechanism by which 5-ASA interferes with CRC growth.

PubMed Disclaimer

Publication types

MeSH terms

Substances