Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;131(1-3):97-102.
doi: 10.1016/j.regpep.2005.07.003.

INGAP-related pentadecapeptide: its modulatory effect upon insulin secretion

Affiliations

INGAP-related pentadecapeptide: its modulatory effect upon insulin secretion

María I Borelli et al. Regul Pept. 2005 Nov.

Abstract

We examined the effects of a pentadecapeptide having the 104-118 aminoacid sequence of islet neogenesis-associated protein (INGAP-PP) on insulin secretion, and the morphological characteristics of adult and neonatal pancreatic rat islets cultured in RPMI and 10 mM glucose for 4 days, with or without different INGAP-PP concentrations (0.1-100 mug/ml). A scrambled 15 aminoacid peptide was used as control for the specificity of INGAP-PP effect. Cultured neonatal and adult islets released insulin in response to glucose (2.8-16.7 mM) in a dose-dependent manner, and to leucine and arginine (10 mM). In all cases, the response was greater in adult islets. INGAP-PP added to the culture medium significantly enhanced glucose- and aminoacid-induced insulin release in both adult and newborn rats; however, no changes were observed with the scrambled peptide. Similar results were obtained incubating freshly isolated adult rat islets with INGAP-PP. Whereas INGAP-PP did not induce significant changes in islet survival rate or proportion/number of islet cells, it increased significantly beta-cell size. This first demonstration of the enhancing effect of INGAP-PP on the beta-cell secretory response of adult and newborn islets opens a new avenue to study its production mechanism and potential use to increase the secretory capacity of endogenous islets in intact animals or of islets preserved for future transplants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources