Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 15;1745(1):1-6.
doi: 10.1016/j.bbamcr.2005.01.008. Epub 2005 Feb 24.

Acid sensing ionic channels: modulation by redox reagents

Affiliations
Free article

Acid sensing ionic channels: modulation by redox reagents

Fedorenko Andrey et al. Biochim Biophys Acta. .
Free article

Abstract

Acid-sensing ion channels (ASICs) are widely expressed in mammalian sensory neurons and supposedly play a role in nociception and acid sensing. In the course of functioning the redox status of the tissue is subjected to changes. Using whole-cell patch-clamp/concentration clamp techniques we have investigated the effect of redox reagents on the ASIC-like currents in the sensory ganglia and hippocampal neurons of rat. The reducing agent dithiothreitol (DTT), when applied in the concentrations 1-2 mM, reversibly potentiates proton-activated currents, while the oxidizing reagent 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) causes their inhibition. The EC50 and Hill coefficient for the activation of ASIC-like currents by protons are not affected by DTT. Redox modulation of proton-activated currents is independent on the membrane potential and on the level of pH used for the current activation. The endogenous antioxidant tripeptide glutathione (its reduced form, g-l-glutamyl-l-cysteinyl-glycine, GSH) also potentiates proton-activated currents. Our results indicate that ASIC-like currents are susceptible to regulation by redox agents.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources