Kinetic resolution of bimolecular hybridization versus intramolecular folding in nucleic acids by surface plasmon resonance: application to G-quadruplex/duplex competition in human c-myc promoter
- PMID: 16085756
- PMCID: PMC1183106
- DOI: 10.1093/nar/gki750
Kinetic resolution of bimolecular hybridization versus intramolecular folding in nucleic acids by surface plasmon resonance: application to G-quadruplex/duplex competition in human c-myc promoter
Abstract
The human oncogene c-myc is regulated by G-quadruplex formation within the nuclease hypersensitive element (NHE III(I)) in the c-myc promoter, making the quadruplex a strong anti-cancer target. With respect to this, the competing equilibrium between intramolecular quadruplex folding and bimolecular duplex formation is poorly understood and very few techniques have addressed this problem. We present a method for simultaneously determining the kinetic constants for G-quadruplex folding/unfolding and hybridization in the presence of the complementary strand from a single reaction using an optical biosensor based on surface plasmon resonance (SPR). Using this technique, we demonstrate for the first time that quadruplex formation in the c-myc promoter is favored at low strand concentrations. Our results indicate favorable quadruplex folding (equilibrium folding constant K(F) of 2.09 calculated from the kinetic parameters: folding rate constant, k(f) = 1.65 x 10(-2) s(-1) and unfolding rate constant, k(u) = 7.90 x 10(-3) s(-1)) in 150 mM K+. The hybridization rate constants detected concurrently gave a bimolecular association constant, k(a) = 1.37 x 10(5) M(-1) s(-1) and dissociation constant, k(d) = 4.94 x 10(-5) s(-1). Interestingly, in the presence of Na+ we observed that G-quadruplex folding was unfavorable (K(F) = 0.54). Implication of our results on the c-myc transcription activation model is discussed in light of aberrant c-myc expression observed on destabilization of the G-quadruplex.
Figures



Similar articles
-
Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex.J Am Chem Soc. 2004 Oct 20;126(41):13255-64. doi: 10.1021/ja048398c. J Am Chem Soc. 2004. PMID: 15479079
-
Quadruplex-duplex competition in the nuclease hypersensitive element of human c-myc promoter: C to T mutation in C-rich strand enhances duplex association.Biochem Biophys Res Commun. 2005 Feb 4;327(1):49-56. doi: 10.1016/j.bbrc.2004.11.137. Biochem Biophys Res Commun. 2005. PMID: 15629428
-
Kinetic and thermodynamic characterization of telomeric G-quadruplex by nonequilibrium capillary electrophoresis: application to G-quadruplex/duplex competition.Anal Chem. 2008 Sep 15;80(18):6935-41. doi: 10.1021/ac801335y. Epub 2008 Aug 12. Anal Chem. 2008. PMID: 18693771
-
Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element.Semin Oncol. 2006 Aug;33(4):498-512. doi: 10.1053/j.seminoncol.2006.04.012. Semin Oncol. 2006. PMID: 16890804 Review.
-
Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids.Biopolymers. 2000-2001;56(3):147-94. doi: 10.1002/1097-0282(2000/2001)56:3<147::AID-BIP10011>3.0.CO;2-N. Biopolymers. 2000. PMID: 11745110 Review.
Cited by
-
QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs.Hum Genomics. 2014 May 1;8(1):8. doi: 10.1186/1479-7364-8-8. Hum Genomics. 2014. PMID: 24885782 Free PMC article.
-
Calcium-Dependent Chemiluminescence Catalyzed by a Truncated c-MYC Promoter G-Triplex DNA.Molecules. 2024 Sep 20;29(18):4457. doi: 10.3390/molecules29184457. Molecules. 2024. PMID: 39339453 Free PMC article.
-
Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells.Nucleic Acids Res. 2009 Jul;37(13):4194-204. doi: 10.1093/nar/gkn1076. Epub 2009 Feb 11. Nucleic Acids Res. 2009. PMID: 19211664 Free PMC article.
-
The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements.Pure Appl Chem. 2010 Jan 1;82(8):1609-1621. doi: 10.1351/PAC-CON-09-09-29. Pure Appl Chem. 2010. PMID: 21796223 Free PMC article.
-
Human Rev1 polymerase disrupts G-quadruplex DNA.Nucleic Acids Res. 2014 Mar;42(5):3272-85. doi: 10.1093/nar/gkt1314. Epub 2013 Dec 23. Nucleic Acids Res. 2014. PMID: 24366879 Free PMC article.
References
-
- Pelengaris S., Rudolph B., Littlewood T. Action of Myc in vivo—proliferation and apoptosis. Curr. Opin. Genet. Dev. 2000;10:100–105. - PubMed
-
- Spencer C.A., Groudine M. Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 1991;56:1–48. - PubMed
-
- Facchini L.M., Penn L.Z. The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J. 1998;12:633–651. - PubMed
-
- Marcu K.B., Bossone S.A., Patel A.J. myc function and regulation. Annu. Rev. Biochem. 1992;61:809–860. - PubMed