Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;47(6):430-41.
doi: 10.1016/j.neuint.2005.05.010.

Cyclosporine a induces growth arrest or programmed cell death of human glioma cells

Affiliations

Cyclosporine a induces growth arrest or programmed cell death of human glioma cells

Agata Zupanska et al. Neurochem Int. 2005 Nov.

Abstract

Human malignant gliomas are highly resistant to current therapeutic approaches. We previously demonstrated that cyclosporine A (CsA) induces an apoptotic cell death in rat C6 glioma cells. In the present study, we found the induction of growth arrest or cell death of human malignant glioma cells exposed to CsA. In studied glioma cells, an accumulation of p21Cip1/Waf1 protein, a cell cycle inhibitor, was observed following CsA treatment, even in the absence of functional p53 tumour suppressor. CsA induced a senescence-associated growth arrest, in U87-MG glioma cells with functional p53, while in U373 and T98G glioma cells with mutated p53, CsA treatment triggered cell death associated with alterations of cell morphology, cytoplasm vacuolation, and condensation of chromatin. In T98G cells this effect was completely abolished by simultaneous treatment with an inhibitor of protein synthesis, cycloheximide (CHX). Moreover, CsA-induced cell death was accompanied by activation of executory caspases followed by PARP cleavage. CsA treatment did not elevate fasL expression and had no effect on mitochondrial membrane potential. We conclude that CsA triggers either growth arrest or non-apoptotic, programmed cell death in human malignant glioma cells. Moreover, CsA employs mechanisms different to those in the action of radio- and chemotherapeutics, and operating even in cells resistant to conventional treatments. Thus, CsA or related drugs may be an effective novel strategy to treat drug-resistant gliomas or complement apoptosis-based therapies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms