Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;54(3):605-15.
doi: 10.1002/mrm.20584.

Microscopic magnetic resonance elastography (microMRE)

Affiliations

Microscopic magnetic resonance elastography (microMRE)

Shadi F Othman et al. Magn Reson Med. 2005 Sep.

Abstract

Magnetic resonance elastography (MRE) was extended to the microscopic scale to image low-frequency acoustic shear waves (typically less than 1 kHz) in soft gels and soft biological tissues with high spatial resolution (34 micromx34 micromx500 microm). Microscopic MRE (microMRE) was applied to agarose gel phantoms, frog oocytes, and tissue-engineered adipogenic and osteogenic constructs. Analysis of the low-amplitude shear wave pattern in the samples allowed the material stiffness and viscous loss properties (complex shear stiffness) to be identified with high spatial resolution. microMRE experiments were conducted at 11.74 T in a 56-mm vertical bore magnet with a 10 mm diameterx75 mm length cylindrical space available for the elastography imaging system. The acoustic signals were generated at 550-585 Hz using a piezoelectric transducer and high capacitive loading amplifier. Shear wave motion was applied in synchrony with the MR pulse sequence. The field of view (FOV) ranged from 4 to 14 mm for a typical slice thickness of 0.5 mm. Increasing the agarose gel concentration resulted in an increase in shear elasticity and shear viscosity. Shear wave motion propagated through the frog oocyte nucleus, enabling the measurement of its shear stiffness, and in vitro shear wave images displayed contrast between adipogenic and osteogenic tissue-engineered constructs. Further development of microMRE should enable its use in characterizing stiffer materials (e.g., polymers, composites, articular cartilage) and assessing with high resolution the mechanical properties of developing tissues.

PubMed Disclaimer

LinkOut - more resources