Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jun;5(2):143-51.
doi: 10.2174/1568008054064805.

Ion transport across the gallbladder epithelium

Affiliations
Review

Ion transport across the gallbladder epithelium

G Meyer et al. Curr Drug Targets Immune Endocr Metabol Disord. 2005 Jun.

Abstract

The function of the gallbladder is not only to store bile, but also to concentrate it during the interdigestive phase by means of salt-dependent water reabsorption. On the contrary, secretions of water and salt take place during the digestive phase. Dysregulation of ion absorption or secretion are common in many gallbladder diseases, such as colelithiasis. Transepithelial absorptions are determined by the Na+/K+ pump on the basolateral membrane, and by several apical membrane Na(+)-coupled transporters. Among these, some isoforms of Na+/H+ and Cl-/HCO3(-) exchangers have been studied. The presence of a Na(+)-Cl(-) simport has been molecularly and functionally characterized in some animal species. The ion transepithelial secretion is mainly dependent on an apical chloride transport attributable to a CFTR-like cAMP-activated channel with high permeability to HCO3(-). The apical membrane electrical potential is one of the factors influencing anion secretion and is maintained by the activity of cAMP-dependent K+ channels. The regulation of the activity of these channels is complex, because of their sensitivity to voltage, and to intracellular calcium and pH. The coordinated interplay underlying the regulation of transporters and channels needs to be clarified yet, as well as the interactions between transporters, channels and aquaporins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources