Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 17;127(32):11226-7.
doi: 10.1021/ja053049j.

Computational study of phosphatase activity in soluble epoxide hydrolase: high efficiency through a water bridge mediated proton shuttle

Affiliations

Computational study of phosphatase activity in soluble epoxide hydrolase: high efficiency through a water bridge mediated proton shuttle

Marco De Vivo et al. J Am Chem Soc. .

Abstract

Recently, a new branch of fatty acid metabolism has been opened by the novel phosphatase activity found in the N-terminal domain of the, hence bifunctional, soluble epoxide hydrolase (sEH). Importantly, this finding has also provided a new site for drug targeting in sEH's activity regulation. Classical MD and hybrid Car-Parrinello QM/MM calculations have been performed to investigate the reaction mechanism of the phosphoenzyme intermediate formation in the first step of the catalysis. The results support a concerted multi-event reaction mechanism: (1) a dissociative in-line nucleophilic substitution for the phosphoryl transfer reaction; (2) a double proton transfer involved in the formation of a good leaving group in the transition state. The presence of a water bridge in the substrate/enzyme complex allowed an efficient proton shuttle, showing its key role in speeding up the catalysis. The calculated free energy of the favored catalytic pathway is approximately 19 kcal/mol, in excellent agreement with experimental data.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources