Measuring the thermal conductivity of a single carbon nanotube
- PMID: 16090962
- DOI: 10.1103/PhysRevLett.95.065502
Measuring the thermal conductivity of a single carbon nanotube
Abstract
Although the thermal properties of millimeter-sized carbon nanotube mats and packed carbon nanofibers have been readily measured, measurements for a single nanotube are extremely difficult. Here, we report a novel method that can reliably measure the thermal conductivity of a single carbon nanotube using a suspended sample-attached T-type nanosensor. Our experimental results show that the thermal conductivity of a carbon nanotube at room temperature increases as its diameter decreases, and exceeds 2000 W/mK for a diameter of 9.8 nm. The temperature dependence of the thermal conductivity for a carbon nanotube with a diameter of 16.1 nm appears to have an asymptote near 320 K. The present method is, in principle, applicable to any kind of a single nanofiber, nanowire, and even single-walled carbon nanotube.
Similar articles
-
Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.Small. 2011 Aug 22;7(16):2334-40. doi: 10.1002/smll.201100429. Epub 2011 Jun 7. Small. 2011. PMID: 21648073
-
Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.Nanotechnology. 2009 Apr 8;20(14):145702. doi: 10.1088/0957-4484/20/14/145702. Epub 2009 Mar 18. Nanotechnology. 2009. PMID: 19420532
-
Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.ACS Appl Mater Interfaces. 2014 Nov 26;6(22):19958-65. doi: 10.1021/am505484z. Epub 2014 Nov 10. ACS Appl Mater Interfaces. 2014. PMID: 25350877
-
Measurement of the thermal conductivity of carbon nanotube--tissue phantom composites with the hot wire probe method.Ann Biomed Eng. 2011 Jun;39(6):1745-58. doi: 10.1007/s10439-011-0268-7. Epub 2011 Mar 1. Ann Biomed Eng. 2011. PMID: 21360225
-
Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method.Nanotechnology. 2009 Aug 5;20(31):315706. doi: 10.1088/0957-4484/20/31/315706. Epub 2009 Jul 14. Nanotechnology. 2009. PMID: 19597251
Cited by
-
Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects.Nat Rev Chem. 2019 Jun;3(6):375-392. doi: 10.1038/s41570-019-0103-5. Epub 2019 Jun 3. Nat Rev Chem. 2019. PMID: 32789186 Free PMC article.
-
Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors.Nanoscale Res Lett. 2011 Dec 22;6(1):636. doi: 10.1186/1556-276X-6-636. Nanoscale Res Lett. 2011. PMID: 22192792 Free PMC article.
-
Effect of Contact Pressure on the Performance of Carbon Nanotube Arrays Thermal Interface Material.Nanomaterials (Basel). 2018 Sep 17;8(9):732. doi: 10.3390/nano8090732. Nanomaterials (Basel). 2018. PMID: 30227621 Free PMC article.
-
Thermal Conductivity of Cellulose Fibers in Different Size Scales and Densities.Biomacromolecules. 2021 Sep 13;22(9):3800-3809. doi: 10.1021/acs.biomac.1c00643. Epub 2021 Aug 17. Biomacromolecules. 2021. PMID: 34510907 Free PMC article.
-
Effects of nanosized constriction on thermal transport properties of graphene.Nanoscale Res Lett. 2014 Aug 21;9(1):408. doi: 10.1186/1556-276X-9-408. eCollection 2014. Nanoscale Res Lett. 2014. PMID: 25232292 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources