Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 9:13:16.
doi: 10.1186/1746-1340-13-16.

Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

Affiliations

Reflex control of the spine and posture: a review of the literature from a chiropractic perspective

Mark W Morningstar et al. Chiropr Osteopat. .

Abstract

Objective: This review details the anatomy and interactions of the postural and somatosensory reflexes. We attempt to identify the important role the nervous system plays in maintaining reflex control of the spine and posture. We also review, illustrate, and discuss how the human vertebral column develops, functions, and adapts to Earth's gravity in an upright position. We identify functional characteristics of the postural reflexes by reporting previous observations of subjects during periods of microgravity or weightlessness.

Background: Historically, chiropractic has centered around the concept that the nervous system controls and regulates all other bodily systems; and that disruption to normal nervous system function can contribute to a wide variety of common ailments. Surprisingly, the chiropractic literature has paid relatively little attention to the importance of neurological regulation of static upright human posture. With so much information available on how posture may affect health and function, we felt it important to review the neuroanatomical structures and pathways responsible for maintaining the spine and posture. Maintenance of static upright posture is regulated by the nervous system through the various postural reflexes. Hence, from a chiropractic standpoint, it is clinically beneficial to understand how the individual postural reflexes work, as it may explain some of the clinical presentations seen in chiropractic practice.

Method: We performed a manual search for available relevant textbooks, and a computer search of the MEDLINE, MANTIS, and Index to Chiropractic Literature databases from 1970 to present, using the following key words and phrases: "posture," "ocular," "vestibular," "cervical facet joint," "afferent," "vestibulocollic," "cervicocollic," "postural reflexes," "spaceflight," "microgravity," "weightlessness," "gravity," "posture," and "postural." Studies were selected if they specifically tested any or all of the postural reflexes either in Earth's gravity or in microgravitational environments. Studies testing the function of each postural component, as well as those discussing postural reflex interactions, were also included in this review.

Discussion: It is quite apparent from the indexed literature we searched that posture is largely maintained by reflexive, involuntary control. While reflexive components for postural control are found in skin and joint receptors, somatic graviceptors, and baroreceptors throughout the body, much of the reflexive postural control mechanisms are housed, or occur, within the head and neck region primarily. We suggest that the postural reflexes may function in a hierarchical fashion. This hierarchy may well be based on the gravity-dependent or gravity-independent nature of each postural reflex. Some or all of these postural reflexes may contribute to the development of a postural body scheme, a conceptual internal representation of the external environment under normal gravity. This model may be the framework through which the postural reflexes anticipate and adapt to new gravitational environments.

Conclusion: Visual and vestibular input, as well as joint and soft tissue mechanoreceptors, are major players in the regulation of static upright posture. Each of these input sources detects and responds to specific types of postural stimulus and perturbations, and each region has specific pathways by which it communicates with other postural reflexes, as well as higher central nervous system structures. This review of the postural reflex structures and mechanisms adds to the growing body of posture rehabilitation literature relating specifically to chiropractic treatment. Chiropractic interest in these reflexes may enhance the ability of chiropractic physicians to treat and correct global spine and posture disorders. With the knowledge and understanding of these postural reflexes, chiropractors can evaluate spinal configurations not only from a segmental perspective, but can also determine how spinal dysfunction may be the ultimate consequence of maintaining an upright posture in the presence of other postural deficits. These perspectives need to be explored in more detail.

PubMed Disclaimer

Figures

Figure 1
Figure 1
This figure illustrates the development of the sagittal spinal curves. In the womb, the fetal spine is more of a C-shape (left). As the child begins to hold his head up, the cervical curve is developed and reinforced (middle). Finally, as the child begins to crawl, gravity helps to develop the lumbar curve, a requisite for a bipedal upright stance (right).
Figure 2
Figure 2
The resistance (R) of any curved column to compression forces is directly proportional to the square of the number of curves (N) plus one (R = N2 + 1). Therefore, the fetal spine with its single curve has a resistance value of 2 (12 + 1 = 2). This is not enough to resist the forces of gravity against the head, neck, and upper trunk as we saw in Figure 1. The development of the cervical curve increases the resistance value of the spine by 2.5 times (22 + 1 = 5).

Similar articles

Cited by

References

    1. Gray H. Gray's Anatomy: The Classic Collector's Edition. Gramercy Books New York; 1977.
    1. Palmer DD. The Chiropractor's Adjuster The Science, Art, and Philosophy of Chiropractic. Portland, OR: Portland Printing House Company; 1910.
    1. Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev. 2002;26:393–428. doi: 10.1016/S0149-7634(02)00014-3. - DOI - PubMed
    1. Bellinger LL, Bernardis LL. The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiol Behav. 2002;76:431–42. doi: 10.1016/S0031-9384(02)00756-4. - DOI - PubMed
    1. Downing JE, Miyan JA. Neural immunoregulation: emerging roles for nerves in immune homeostasis and disease. Immunol Today. 2000;21:281–289. doi: 10.1016/S0167-5699(00)01635-2. - DOI - PubMed

LinkOut - more resources