Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 1;21(19):3748-54.
doi: 10.1093/bioinformatics/bti617. Epub 2005 Aug 9.

Accounting for probe-level noise in principal component analysis of microarray data

Affiliations

Accounting for probe-level noise in principal component analysis of microarray data

Guido Sanguinetti et al. Bioinformatics. .

Abstract

Motivation: Principal Component Analysis (PCA) is one of the most popular dimensionality reduction techniques for the analysis of high-dimensional datasets. However, in its standard form, it does not take into account any error measures associated with the data points beyond a standard spherical noise. This indiscriminate nature provides one of its main weaknesses when applied to biological data with inherently large variability, such as expression levels measured with microarrays. Methods now exist for extracting credibility intervals from the probe-level analysis of cDNA and oligonucleotide microarray experiments. These credibility intervals are gene and experiment specific, and can be propagated through an appropriate probabilistic downstream analysis.

Results: We propose a new model-based approach to PCA that takes into account the variances associated with each gene in each experiment. We develop an efficient EM-algorithm to estimate the parameters of our new model. The model provides significantly better results than standard PCA, while remaining computationally reasonable. We show how the model can be used to 'denoise' a microarray dataset leading to improved expression profiles and tighter clustering across profiles. The probabilistic nature of the model means that the correct number of principal components is automatically obtained.

PubMed Disclaimer

Publication types

LinkOut - more resources