Calcium signaling in cardiac ventricular myocytes
- PMID: 16093487
- DOI: 10.1196/annals.1341.008
Calcium signaling in cardiac ventricular myocytes
Abstract
Calcium (Ca) is a multifunctional regulator of diverse cellular functions. In cardiac muscle Ca is a direct central mediator of electrical activation, ion channel gating, and excitation-contraction (E-C) coupling that all occur on the millisecond time scale. The key amplification step in E-C coupling is under tight control of very local [Ca]. Ca also directly activates signaling via kinases and phosphatases (e.g., Ca-calmodulin-dependent protein kinase [CaMKII] and calcineurin) that occur over a longer time scale (seconds to minutes), and the co-localization of these Ca-dependent modulators to their targets and to Ca is also critical in distinct signaling pathways. Finally, Ca-dependent signaling is also involved in long-term (minutes to hours/days) alterations in gene expression (or excitation-transcription coupling). These pathways are involved in hypertrophy and heart failure, and they can alter the expression of some of the key Ca regulatory proteins involved in E-C coupling and their regulation by kinases and phosphatases. There may again be physical microenvironments involved in this nuclear transcription, such that they sense a discrete Ca signal that is distinct from that involved in E-C coupling. In this way cells can use Ca signaling in multiple ways that function in spatially and temporally distinct manners.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
- Full Text Sources
- Other Literature Sources
 
        