Modulation of transmural repolarization
- PMID: 16093507
- PMCID: PMC1474840
- DOI: 10.1196/annals.1341.028
Modulation of transmural repolarization
Abstract
Ventricular myocardium in larger mammals has been shown to be comprised of three distinct cell types: epicardial, M, and endocardial. Epicardial and M cell action potentials differ from endocardial cells with respect to the morphology of phase 1. These cells possess a prominent I(to)-mediated notch responsible for the "spike and dome" morphology of the epicardial and M cell response. M cells are distinguished from the other cell types in that they display a smaller I(Ks), but a larger late I(Na) and I(Na-Ca). These ionic distinctions underlie the longer action potential duration (APD) and steeper APD-rate relationship of the M cell. Difference in the time course of repolarization of phase 1 and phase 3 are responsible for the inscription of the electrocardiographic J wave and T wave, respectively. These repolarization gradients are sensitively modulated by electrotonic communication among the three cells types, [K(1)](o), and the presence of drugs that either reduce or augment net repolarizing current. A reduction in net repolarizing current generally leads to a preferential prolongation of the M cell action potential, responsible for a prolongation of the QT interval and an increase in transmural dispersion of repolarization (TDR), which underlies the development of torsade de pointes arrhythmias. An increase in net repolarizing current can lead to a preferential abbreviation of the action potential of epicardium in the right ventricle (RV), and endocardium in the left ventricle (LV). These actions also lead to a TDR that manifests as the Brugada syndrome in RV and the short QT syndrome in LV.
Similar articles
-
Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome.J Electrocardiol. 1999;32 Suppl:158-65. doi: 10.1016/s0022-0736(99)90074-2. J Electrocardiol. 1999. PMID: 10688320 Review.
-
The role of sodium channel current in modulating transmural dispersion of repolarization and arrhythmogenesis.J Cardiovasc Electrophysiol. 2006 May;17 Suppl 1(Suppl 1):S79-S85. doi: 10.1111/j.1540-8167.2006.00388.x. J Cardiovasc Electrophysiol. 2006. PMID: 16686686 Free PMC article. Review.
-
Electrical heterogeneity within the ventricular wall.Basic Res Cardiol. 2001 Nov;96(6):517-27. doi: 10.1007/s003950170002. Basic Res Cardiol. 2001. PMID: 11770069 Review.
-
Cardiac repolarization. The long and short of it.Europace. 2005 Sep;7 Suppl 2(Suppl 2):3-9. doi: 10.1016/j.eupc.2005.05.010. Europace. 2005. PMID: 16102498 Free PMC article. Review.
-
Effect of epicardial or biventricular pacing to prolong QT interval and increase transmural dispersion of repolarization: does resynchronization therapy pose a risk for patients predisposed to long QT or torsade de pointes?Circulation. 2003 Feb 11;107(5):740-6. doi: 10.1161/01.cir.0000048126.07819.37. Circulation. 2003. PMID: 12578878 Clinical Trial.
Cited by
-
Remodeling of early-phase repolarization: a mechanism of abnormal impulse conduction in heart failure.Circulation. 2006 Apr 18;113(15):1849-56. doi: 10.1161/CIRCULATIONAHA.106.615682. Circulation. 2006. PMID: 16618832 Free PMC article.
-
Novel algorithm for identifying T-wave current density alternans using synthesized 187-channel vector-projected body surface mapping.Heart Vessels. 2011 Mar;26(2):160-7. doi: 10.1007/s00380-010-0042-z. Epub 2010 Oct 30. Heart Vessels. 2011. PMID: 21052691
-
Sudden cardiac death secondary to antidepressant and antipsychotic drugs.Expert Opin Drug Saf. 2008 Mar;7(2):181-94. doi: 10.1517/14740338.7.2.181. Expert Opin Drug Saf. 2008. PMID: 18324881 Free PMC article. Review.
-
Origin of the electrocardiographic U wave: effects of M cells and dynamic gap junction coupling.Ann Biomed Eng. 2010 Mar;38(3):1060-70. doi: 10.1007/s10439-010-9941-5. Epub 2010 Feb 3. Ann Biomed Eng. 2010. PMID: 20127511 Free PMC article.
-
Electrophysiological and structural determinants of electrotonic modulation of repolarization by the activation sequence.Front Physiol. 2013 Oct 8;4:281. doi: 10.3389/fphys.2013.00281. eCollection 2013. Front Physiol. 2013. PMID: 24115934 Free PMC article.
References
-
- ANTZELEVITCH C, DUMAINE R. Electrical heterogeneity in the heart: physiological, pharmacological and clinical implications. In: Page E, Fozzard H, Solaro RJ, editors. Handbook of Electrophysiology: The Heart. Oxford University Press; New York: 2002. pp. 654–692.
-
- DI DIEGO JM, SUN ZQ, ANTZELEVITCH C. Ito and action potential notch are smaller in left vs. right canine ventricular epicardium. Am J Physiol. 1996;271:H548–H561. - PubMed
-
- VOLDERS PG, SIPIDO KR, CARMELIET E, et al. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation. 1999;99:206–210. - PubMed
-
- SICOURI S, ANTZELEVITCH C. A subpopulation of cells with unique electro-physiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ. Res. 1991;68:1729–1741. - PubMed
-
- ANTZELEVITCH CW, SHIMIZU GX, YAN, et al. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Cardiovasc. Electrophysiol. 1999;10:1124–1152. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources