Ribonuclease H evolution in retrotransposable elements
- PMID: 16093691
- DOI: 10.1159/000084971
Ribonuclease H evolution in retrotransposable elements
Abstract
Eukaryotic and prokaryotic genomes encode either Type I or Type II Ribonuclease H (RNH) which is important for processing RNA primers that prime DNA replication in almost all organisms. This review highlights the important role that Type I RNH plays in the life cycle of many retroelements, and its utility in tracing early events in retroelement evolution. Many retroelements utilize host genome-encoded RNH, but several lineages of retroelements, including some non-LTR retroposons and all LTR retrotransposons, encode their own RNH domains. Examination of these RNH domains suggests that all LTR retrotransposons acquired an enzymatically weak RNH domain that is missing an important catalytic residue found in all other RNH enzymes. We propose that this reduced activity is essential to ensure correct processing of the polypurine tract (PPT), which is an important step in the life cycle of these retrotransposons. Vertebrate retroviruses appear to have reacquired their RNH domains, which are catalytically more active, but their ancestral RNH domains (found in other LTR retrotransposons) have degenerated to give rise to the tether domains unique to vertebrate retroviruses. The tether domain may serve to control the more active RNH domain of vertebrate retroviruses. Phylogenetic analysis of the RNH domains is also useful to "date" the relative ages of LTR and non-LTR retroelements. It appears that all LTR retrotransposons are as old as, or younger than, the "youngest" lineages of non-LTR retroelements, suggesting that LTR retrotransposons arose late in eukaryotes.
Similar articles
-
Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses.Mol Biol Evol. 2015 May;32(5):1197-207. doi: 10.1093/molbev/msv008. Epub 2015 Jan 19. Mol Biol Evol. 2015. PMID: 25605791 Free PMC article.
-
Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses.Genome Res. 2001 Jul;11(7):1187-97. doi: 10.1101/gr.185101. Genome Res. 2001. PMID: 11435400
-
The VIPER elements of trypanosomes constitute a novel group of tyrosine recombinase-enconding retrotransposons.Mol Biochem Parasitol. 2006 Feb;145(2):184-94. doi: 10.1016/j.molbiopara.2005.10.002. Epub 2005 Oct 24. Mol Biochem Parasitol. 2006. PMID: 16297462
-
[Origin, evolution, and distribution of different groups of non-LTR retrotransposons among eukaryotes].Genetika. 2009 Feb;45(2):149-59. Genetika. 2009. PMID: 19334608 Review. Russian.
-
Transposing without ends: the non-LTR retrotransposable elements.New Biol. 1992 May;4(5):430-40. New Biol. 1992. PMID: 1325183 Review.
Cited by
-
DIRS and Ngaro Retrotransposons in Fungi.PLoS One. 2013 Sep 25;8(9):e76319. doi: 10.1371/journal.pone.0076319. eCollection 2013. PLoS One. 2013. PMID: 24086727 Free PMC article.
-
Evolutionary history of LTR retrotransposon chromodomains in plants.Int J Plant Genomics. 2012;2012:874743. doi: 10.1155/2012/874743. Epub 2012 Apr 29. Int J Plant Genomics. 2012. PMID: 22611377 Free PMC article.
-
Convergent evolution of ribonuclease h in LTR retrotransposons and retroviruses.Mol Biol Evol. 2015 May;32(5):1197-207. doi: 10.1093/molbev/msv008. Epub 2015 Jan 19. Mol Biol Evol. 2015. PMID: 25605791 Free PMC article.
-
Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution.Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20140-5. doi: 10.1073/pnas.1310958110. Epub 2013 Nov 25. Proc Natl Acad Sci U S A. 2013. PMID: 24277848 Free PMC article.
-
Convergence of retrotransposons in oomycetes and plants.Mob DNA. 2017 Mar 14;8:4. doi: 10.1186/s13100-017-0087-y. eCollection 2017. Mob DNA. 2017. PMID: 28293305 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous