Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 22;123(4):044702.
doi: 10.1063/1.1924549.

Characterization of the restricted rotation of the dimethyl groups in chemically N-terminal 13C-labeled antifreeze glycoproteins: a temperature-dependent study in water to ice through the supercooled state

Affiliations

Characterization of the restricted rotation of the dimethyl groups in chemically N-terminal 13C-labeled antifreeze glycoproteins: a temperature-dependent study in water to ice through the supercooled state

V V Krishnan et al. J Chem Phys. .

Abstract

Site-specific chemical modification, especially with isotopically enriched groups, allows one to study the structure and dynamics of proteins for which uniform enrichment is difficult. When the N-terminal alanine in antifreeze glycoprotein (AFGP) is replaced with an N,N-dimethyl alanine the methyl groups show signatures of slow rotation about the C-N bond. In order to separate the local dynamics of the N-terminus from the overall protein dynamics, we present a complete characterization of this dynamics. Temperature-dependent nuclear magnetic-resonance experiments from room temperature to subzero temperatures, including the supercooled state and in the presence of ice, are presented. Quantum chemical calculations are also performed on a localized N-terminus of the AFGP. Our results show that in the solution state at room temperature and in the super cooled regime, the dimethyl groups undergo a slow, restricted rotation with an unequal distribution of population between two major conformations. At lower temperatures in the presence of ice, the dynamics become much more complex due to freezing out of several conformational states. Based on these results, we conclude that the segmental dynamics of the N-terminus are local to the first residue and do not affect the overall dynamics of the protein.

PubMed Disclaimer

Publication types

LinkOut - more resources