Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;5(9):2160-9.
doi: 10.1111/j.1600-6143.2005.01017.x.

Reperfusion-induced gene expression profiles in rat lung transplantation

Affiliations
Free article

Reperfusion-induced gene expression profiles in rat lung transplantation

Masaomi Yamane et al. Am J Transplant. 2005 Sep.
Free article

Abstract

Ischemia-Reperfusion (I/R) injury after lung transplantation (LTx) can lead to significant morbidity and mortality in recipients. In an attempt to improve our understanding of molecular mechanisms of I/R injury, we examined the changes in gene expression levels in a rat lung transplant model using oligonucleotide microarrays. Lewis rat lung grafts were stored for 6 or 24 h followed by transplantation and reperfusion for 2 h. Lung tissues were taken before and after flushing the grafts, before implantation, and after 2 h of reperfusion. RNA samples were examined with Affymetrix rat microarray chips and RT-PCR was performed to validate significant changes in gene expression. Microarray analysis showed 404 genes that were up-regulated more than 2-fold after reperfusion compared to cold ischemic lungs, and 187 genes that were down-regulated. Using RT-PCR, we confirmed the response pattern of several specific gene transcripts from the microarray analysis. Among these, up-regulation in transcripts of transcription factors, adhesion molecules, pro-coagulant factors and pro-inflammatory cytokines were identified. The differential gene regulation during the I/R process can be considered as molecular signatures for the changes of cellular metabolism, functions and injury. Reperfusion-induced genes related to inflammatory response may contribute to graft dysfunction in LTx.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms