Optimizing conductance parameters of cortical neural models via electrotonic partitions
- PMID: 16095875
- DOI: 10.1016/j.neunet.2005.06.038
Optimizing conductance parameters of cortical neural models via electrotonic partitions
Abstract
Development of automated methods for fitting computational models to observed biological data is an important challenge of neural modeling. Previous work has focused on generalized search techniques combined with distance measures tuned to specific neural morphologies. We propose general analysis techniques to guide construction of distance measures across a broader range of cell types. Specifically, we evaluate the use of multiple external stimuli to evoke characteristic behaviors of underlying active channel densities on a simple three-compartment model. We also examine the use of frequency analysis to smooth search space distortions induced by temporal shifts in recorded voltage traces. We propose a novel method of parameter optimization that is characterized by linear regression over the conductance densities using channel permissiveness as a basis of ionic current. We derive this method and demonstrate, given known anatomy and kinetics, it will solve all conductance densities in an N compartment model given N spatially distinct membrane potential traces with minimal error. We compare the regression method with the covariance matrix adaptation evolutionary strategy (CMA-ES) over a two-compartment cortical neuron and empirically show that regression over electrotonic partitions solves the cortical model near-optimally. We also show that electronic partitioning significantly improves search performance of CMA-ES on the cortical model.
Similar articles
-
Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation.J Neurosci Methods. 2008 Apr 30;169(2):302-22. doi: 10.1016/j.jneumeth.2007.11.010. Epub 2007 Nov 22. J Neurosci Methods. 2008. PMID: 18187201
-
Using complicated, wide dynamic range driving to develop models of single neurons in single recording sessions.J Neurophysiol. 2008 Apr;99(4):1871-83. doi: 10.1152/jn.00032.2008. Epub 2008 Feb 6. J Neurophysiol. 2008. PMID: 18256169
-
Automated neuron model optimization techniques: a review.Biol Cybern. 2008 Nov;99(4-5):241-51. doi: 10.1007/s00422-008-0257-6. Epub 2008 Nov 15. Biol Cybern. 2008. PMID: 19011918 Review.
-
A parameter-space search algorithm tested on a Hodgkin-Huxley model.Biol Cybern. 2007 Jun;96(6):625-34. doi: 10.1007/s00422-007-0156-2. Epub 2007 May 9. Biol Cybern. 2007. PMID: 17487502
-
Activated cortical states: experiments, analyses and models.J Physiol Paris. 2007 Jan-May;101(1-3):99-109. doi: 10.1016/j.jphysparis.2007.10.001. Epub 2007 Oct 16. J Physiol Paris. 2007. PMID: 18023562 Review.
Cited by
-
Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models.Front Neuroinform. 2007 Nov 2;1:1. doi: 10.3389/neuro.11.001.2007. eCollection 2007. Front Neuroinform. 2007. PMID: 18974796 Free PMC article.
-
Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment.J Neurophysiol. 2014 Nov 1;112(9):2332-48. doi: 10.1152/jn.00007.2014. Epub 2014 Jul 9. J Neurophysiol. 2014. PMID: 25008414 Free PMC article.
-
Smoothing of, and parameter estimation from, noisy biophysical recordings.PLoS Comput Biol. 2009 May;5(5):e1000379. doi: 10.1371/journal.pcbi.1000379. Epub 2009 May 8. PLoS Comput Biol. 2009. PMID: 19424506 Free PMC article.
-
The use of automated parameter searches to improve ion channel kinetics for neural modeling.J Comput Neurosci. 2011 Oct;31(2):329-46. doi: 10.1007/s10827-010-0312-x. Epub 2011 Jan 18. J Comput Neurosci. 2011. PMID: 21243419
-
Efficient fitting of conductance-based model neurons from somatic current clamp.J Comput Neurosci. 2012 Feb;32(1):1-24. doi: 10.1007/s10827-011-0331-2. Epub 2011 May 25. J Comput Neurosci. 2012. PMID: 21611777
MeSH terms
LinkOut - more resources
Full Text Sources