Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan 30;150(2):202-11.
doi: 10.1016/j.jneumeth.2005.06.015. Epub 2005 Aug 15.

Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study

Affiliations

Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study

Kyung Hwan Kim et al. J Neurosci Methods. .

Abstract

One of the most important building blocks of the brain-machine interface (BMI) based on neuronal spike trains is the decoding algorithm, a computational method for the reconstruction of desired information from spike trains. Previous studies have reported that a simple linear filter is effective for this purpose and that no noteworthy gain is achieved from the use of nonlinear algorithms. In order to test this premise, we designed several decoding algorithms based on the linear filter, and two nonlinear mapping algorithms using multilayer perceptron (MLP) and support vector machine regression (SVR). Their performances were assessed using multiple neuronal spike trains generated by a biophysical neuron model and by a directional tuning model of the primary motor cortex. The performances of the nonlinear algorithms, in general, were superior. The advantages of using nonlinear algorithms were more profound for cases where false-positive/negative errors occurred in spike trains. When the MLPs were trained using trial-and-error, they often showed disappointing performance comparable to that of the linear filter. The nonlinear SVR showed the highest performance, and this may be due to the superiority of SVR in training and generalization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources