Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 7;280(40):33735-8.
doi: 10.1074/jbc.M506485200. Epub 2005 Aug 12.

LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor

Affiliations
Free article

LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor

Sujoy Lahiri et al. J Biol Chem. .
Free article

Abstract

We demonstrated recently (Riebeling, C., Allegood, J.C., Wang, E., Merrill, A. H. Jr., and Futerman, A. H. (2003) J. Biol. Chem. 278, 43452-43459) that upon over-expression in human embryonic kidney cells, longevity assurance gene homolog 5 (LASS5, previously named TRH4) elevates the synthesis of (dihydro)ceramides selectively enriched in palmitic acid. To determine whether LASS5 is a bona fide dihydroceramide synthase or, alternatively, whether it modifies an endogenous dihydroceramide synthase, we over-expressed LASS5 with a hemagglutinin (HA) tag at the C terminus, solubilized it using digitonin, and purified it by immunoprecipitation. Solubilized LASS5-HA displays the same fatty acid selectivity as the membrane-bound enzyme. After elution from agarose beads, only one band could be detected by SDS-PAGE, and its identity was confirmed to be LASS5 by mass spectrometry. Dihydroceramide synthase activity of the eluted LASS5-HA protein was totally dependent on exogenously added phospholipids. Moreover, eluted LASS5-HA was highly selective toward palmitoyl-CoA as acyl donor and was inhibited by the (dihydro)ceramide synthase inhibitor, fumonisin B1. This study identifies LASS5 as a genuine dihydroceramide synthase and demonstrates that mammalian dihydroceramide synthases do not require additional subunits for their activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types