Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study
- PMID: 16100276
- PMCID: PMC1366812
- DOI: 10.1529/biophysj.104.052290
Interaction between lipid monolayers and poloxamer 188: an X-ray reflectivity and diffraction study
Abstract
The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase separating from the lipids, forces the lipid molecules to pack tightly and restore the barrier function of the membrane. Upon compression to bilayer equivalent pressure, P188 is squeezed out from the lipid monolayer, allowing a graceful exit of P188 when the membrane integrity is restored.
Figures














Similar articles
-
Lipid corralling and poloxamer squeeze-out in membranes.Phys Rev Lett. 2004 Jul 9;93(2):028101. doi: 10.1103/PhysRevLett.93.028101. Epub 2004 Jul 7. Phys Rev Lett. 2004. PMID: 15323953
-
Direct observation of poloxamer 188 insertion into lipid monolayers.Biophys J. 2002 Mar;82(3):1453-9. doi: 10.1016/S0006-3495(02)75499-4. Biophys J. 2002. PMID: 11867460 Free PMC article.
-
Lipid discrimination in phospholipid monolayers by the antimicrobial frog skin peptide PGLa. A synchrotron X-ray grazing incidence and reflectivity study.Eur Biophys J. 2002 Oct;31(6):428-37. doi: 10.1007/s00249-002-0233-3. Epub 2002 Jun 28. Eur Biophys J. 2002. PMID: 12355252
-
Biomolecular and amphiphilic films probed by surface sensitive X-ray and neutron scattering.Anal Bioanal Chem. 2004 Aug;379(7-8):960-73. doi: 10.1007/s00216-004-2696-9. Epub 2004 Jul 31. Anal Bioanal Chem. 2004. PMID: 15338090 Review.
-
Hydration and steric pressures between phospholipid bilayers.Annu Rev Biophys Biomol Struct. 1994;23:27-51. doi: 10.1146/annurev.bb.23.060194.000331. Annu Rev Biophys Biomol Struct. 1994. PMID: 7919783 Review. No abstract available.
Cited by
-
Photoinduced bidirectional switching in lipid membranes containing azobenzene glycolipids.Sci Rep. 2023 Jul 16;13(1):11480. doi: 10.1038/s41598-023-38336-x. Sci Rep. 2023. PMID: 37455299 Free PMC article.
-
Surfactant-induced Marangoni transport of lipids and therapeutics within the lung.Curr Opin Colloid Interface Sci. 2018 Jul;36:58-69. doi: 10.1016/j.cocis.2018.01.001. Epub 2018 Jan 13. Curr Opin Colloid Interface Sci. 2018. PMID: 30147429 Free PMC article.
-
Functional importance of the NH2-terminal insertion sequence of lung surfactant protein B.Am J Physiol Lung Cell Mol Physiol. 2010 Mar;298(3):L335-47. doi: 10.1152/ajplung.00190.2009. Epub 2009 Dec 18. Am J Physiol Lung Cell Mol Physiol. 2010. PMID: 20023175 Free PMC article.
-
Spatial Distribution of PEO-PPO-PEO Block Copolymer and PEO Homopolymer in Lipid Bilayers.Langmuir. 2020 Apr 7;36(13):3393-3403. doi: 10.1021/acs.langmuir.9b03208. Epub 2020 Mar 27. Langmuir. 2020. PMID: 32216370 Free PMC article.
-
Muscle membrane integrity in Duchenne muscular dystrophy: recent advances in copolymer-based muscle membrane stabilizers.Skelet Muscle. 2018 Oct 10;8(1):31. doi: 10.1186/s13395-018-0177-7. Skelet Muscle. 2018. PMID: 30305165 Free PMC article. Review.
References
-
- Lee, R. C., and M. S. Kolodney. 1987. Electrical injury mechanisms: electrical breakdown of cell membranes. Plast. Reconstr. Surg. 80:672–679. - PubMed
-
- Lee, R. C., D. C. Gaylor, D. Bhatt, and D. A. Israel. 1988. Role of cell membrane rupture in the pathogenesis of electrical trauma. J. Surg. Res. 44:709–719. - PubMed
-
- Lee, R. C., and M. S. Kolodney. 1987. Electrical injury mechanisms: dynamics of the thermal response. Plast. Reconstr. Surg. 80:663–671. - PubMed
-
- Lee, R. C., D. Zhang, and J. Hannig. 2000. Biophysical injury mechanisms in electrical shock trauma. Annu. Rev. Biomed. Eng. 02:477–509. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources