Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005;5(7):665-73.
doi: 10.2174/1568026054679362.

N-hydroxyurea and acyl nitroso compounds as nitroxyl (HNO) and nitric oxide (NO) donors

Affiliations
Review

N-hydroxyurea and acyl nitroso compounds as nitroxyl (HNO) and nitric oxide (NO) donors

S Bruce King. Curr Top Med Chem. 2005.

Abstract

Hydroxyurea has emerged as a new therapy for sickle cell disease but a complete mechanistic description of its beneficial actions does not exist. Patients taking hydroxyurea show evidence for the in vivo conversion of hydroxyurea to nitric oxide (NO), which also has drawn interest as a sickle cell disease treatment. While the chemical oxidation of hydroxyurea produces NO or NO-related products, NO formation from the reactions of hydroxyurea and hemoglobin do not occur fast enough to account for the observed increases in patients taking hydroxyurea. Both horseradish peroxidase and catalase catalyze the rapid formation of nitric oxide and nitroxyl (HNO) from hydroxyurea. In these reactions, hydroxyurea is converted to an acyl nitroso species that hydrolyzes to form HNO. The ferric heme protein then oxidizes HNO to NO that combines with the heme iron to form a ferrous-NO complex that may act as an NO donor. In general, acyl nitroso compounds, regardless of the method of their preparation, hydrolyze to form HNO and the corresponding carboxylic acid derivative. Similarly, the incubation of blood and hydroxyurea with urease rapidly form NO-related species suggesting the initial urease-mediated hydrolysis of hydroxyurea to hydroxylamine, which then reacts quickly with hemoglobin to form these products. These studies present two NO releasing mechanisms from hydroxyurea that are kinetically competent with clinical observations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources