Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005;11(22):2825-40.
doi: 10.2174/1381612054546752.

Oligonucleotides as anticancer agents: from the benchside to the clinic and beyond

Affiliations
Review

Oligonucleotides as anticancer agents: from the benchside to the clinic and beyond

Francesca Marietta Coppelli et al. Curr Pharm Des. 2005.

Abstract

Prevention, improved screening, and better treatment regimens have improved cancer incidence and mortality in the last decade. Chemoradiation continues to cause high morbidity in patients undergoing treatment. DNA therapeutics have the potential to modify the genes that cause tumor progression in order to produce a response that is tumor-specific, efficacious and systemic without toxicity to normal cells. The most widely used and most experimentally advanced DNA therapeutic is the antisense oligonucleotide. These oligomers are predominantly used to inhibit mRNA expression. For cancer chemotherapy, the Bcl-2 antisense oligonucleotide is currently in phase III clinical trials. Transcription factor decoys form DNA:protein heteroduplexes and produce cellular responses at the genomic rather than transcriptional level. The use of other transcription factor decoys as oncologic reagents is now being developed. The phenomenon of RNA interference has only recently been discovered to occur in plants as a response to viral infection. Small interfering RNAs cause mRNA inhibition. siRNAs also inhibit expression of mRNA, however the intracellular cascade is quite different. siRNA could prove to be more powerful and longer lasting than antisense. Several DNA therapeutics are currently being studied. This review will focus on antisense oligonucleotides, transcription factor decoys and siRNA with an emphasis on how they can be employed as anticancer agents. Mechanism of action and design strategies will be summarized, as well as therapeutic targets and demonstrated clinical efficacy for each reagent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources