Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid
- PMID: 16102743
- DOI: 10.1016/j.ydbio.2005.07.015
Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid
Abstract
A prominent region of the vertebrate hindbrain is subdivided along the anterior-posterior axis into a series of seven segments, or rhombomeres. The identity of each rhombomere is specified by the expression of conserved transcription factors, including Krox-20, vHnf1, Val (Kreisler, Mafb) and several Hox proteins. Previous work has shown that retinoic acid (RA) signaling plays a critical role in regulating the expression of these factors and that more posterior rhombomeres require higher levels of RA than more anterior rhombomeres. Models to account for RA concentration dependency have proposed either a static RA gradient or increasing time periods of RA exposure. Here, we provide evidence against both of these models. We show that early zebrafish rhombomere-specification genes, including vhnf1 in r5-r6 and hoxd4a in r7, initiate expression sequentially in the hindbrain, each adjacent to the source of RA synthesis in paraxial mesoderm. By knocking down RA signaling, we show that progressively more posterior rhombomeres require increasingly higher levels of RA signaling, and vhnf1 and hoxd4a expression are particularly RA-dependent. RA synthesis is required just at the time of initiation, but not for maintenance, of vhnf1 and hoxd4a expression. Furthermore, a premature RA increase causes premature activation of vhnf1 and hoxd4a expression. Our results support a new model of dynamic RA action in the hindbrain, in which a temporally increasing source of RA is required to sequentially initiate progressively more posterior rhombomere identities.
Similar articles
-
vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish.Development. 2004 Sep;131(18):4511-20. doi: 10.1242/dev.01297. Development. 2004. PMID: 15342476
-
Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification.Dev Dyn. 2006 Oct;235(10):2695-709. doi: 10.1002/dvdy.20905. Dev Dyn. 2006. PMID: 16871626
-
Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain.Dev Biol. 2004 Jun 1;270(1):186-99. doi: 10.1016/j.ydbio.2004.02.022. Dev Biol. 2004. PMID: 15136149
-
Retinoic acid and hindbrain patterning.J Neurobiol. 2006 Jun;66(7):705-25. doi: 10.1002/neu.20272. J Neurobiol. 2006. PMID: 16688767 Review.
-
Constructing the hindbrain: insights from the zebrafish.Dev Dyn. 2002 May;224(1):1-17. doi: 10.1002/dvdy.10086. Dev Dyn. 2002. PMID: 11984869 Review.
Cited by
-
Visualization of an endogenous retinoic acid gradient across embryonic development.Nature. 2013 Apr 18;496(7445):363-6. doi: 10.1038/nature12037. Epub 2013 Apr 7. Nature. 2013. PMID: 23563268
-
Transgenic retinoic acid sensor lines in zebrafish indicate regions of available embryonic retinoic acid.Dev Dyn. 2013 Aug;242(8):989-1000. doi: 10.1002/dvdy.23987. Epub 2013 Jun 18. Dev Dyn. 2013. PMID: 23703807 Free PMC article.
-
Retinoid signaling in control of progenitor cell differentiation during mouse development.Semin Cell Dev Biol. 2013 Dec;24(10-12):694-700. doi: 10.1016/j.semcdb.2013.08.001. Epub 2013 Aug 21. Semin Cell Dev Biol. 2013. PMID: 23973941 Free PMC article. Review.
-
Multiple morphogens and rapid elongation promote segmental patterning during development.PLoS Comput Biol. 2021 Jun 23;17(6):e1009077. doi: 10.1371/journal.pcbi.1009077. eCollection 2021 Jun. PLoS Comput Biol. 2021. PMID: 34161317 Free PMC article.
-
CDX4 and retinoic acid interact to position the hindbrain-spinal cord transition.Dev Biol. 2016 Feb 15;410(2):178-189. doi: 10.1016/j.ydbio.2015.12.025. Epub 2016 Jan 6. Dev Biol. 2016. PMID: 26773000 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases