Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Sep;97(9):667-73.
doi: 10.1042/BC20040132.

Aquaporin-1 in the peritoneal membrane: implications for peritoneal dialysis and endothelial cell function

Affiliations
Review

Aquaporin-1 in the peritoneal membrane: implications for peritoneal dialysis and endothelial cell function

Olivier Devuyst et al. Biol Cell. 2005 Sep.

Abstract

PD (peritoneal dialysis) is an established mode of renal replacement therapy, based on the exchange of fluid and solutes between blood in peritoneal capillaries and a dialysate that has been introduced into the peritoneal cavity. The dialysis process involves diffusive and convective transports and osmosis through the PM (peritoneal membrane). Computer simulations predicted that the PM contains ultrasmall pores (radius <3 A, 1 A=10(-10) m), responsible for up to 50% of UF (ultrafiltration), i.e. the osmotically driven water movement during PD. Several lines of evidence suggest that AQP1 (aquaporin-1) is the ultrasmall pore responsible for transcellular water permeability during PD. Treatment with corticosteroids induces the expression of AQP1 in the PM and improves water permeability and UF in rats without affecting the osmotic gradient and permeability for small solutes. Studies in knockout mice provided further evidence that osmotically driven water transport across the PM is mediated by AQP1. AQP1 and eNOS (endothelial nitric oxide synthase) show a distinct regulation within the endothelium lining the peritoneal capillaries. In acute peritonitis, the up-regulation of eNOS and increased release of nitric oxide dissipate the osmotic gradient and prevent UF, whereas AQP1 expression is unchanged. These results illustrate the usefulness of the PM to investigate the role and regulation of AQP1 in the endothelium. The results also emphasize the critical role of AQP1 during PD and suggest that manipulation of AQP1 expression may be used to increase water permeability across the PM.

PubMed Disclaimer

Publication types

LinkOut - more resources