Bias in the estimation of false discovery rate in microarray studies
- PMID: 16105901
- DOI: 10.1093/bioinformatics/bti626
Bias in the estimation of false discovery rate in microarray studies
Erratum in
- Bioinformatics. 2005 Dec 15;21(24):4435
Abstract
Motivation: The false discovery rate (FDR) provides a key statistical assessment for microarray studies. Its value depends on the proportion pi(0) of non-differentially expressed (non-DE) genes. In most microarray studies, many genes have small effects not easily separable from non-DE genes. As a result, current methods often overestimate pi(0) and FDR, leading to unnecessary loss of power in the overall analysis.
Methods: For the common two-sample comparison we derive a natural mixture model of the test statistic and an explicit bias formula in the standard estimation of pi(0). We suggest an improved estimation of pi(0) based on the mixture model and describe a practical likelihood-based procedure for this purpose.
Results: The analysis shows that a large bias occurs when pi(0) is far from 1 and when the non-centrality parameters of the distribution of the test statistic are near zero. The theoretical result also explains substantial discrepancies between non-parametric and model-based estimates of pi(0). Simulation studies indicate mixture-model estimates are less biased than standard estimates. The method is applied to breast cancer and lymphoma data examples.
Availability: An R-package OCplus containing functions to compute pi(0) based on the mixture model, the resulting FDR and other operating characteristics of microarray data, is freely available at http://www.meb.ki.se/~yudpaw
Contact: yudi.pawitan@meb.ki.se and alexander.ploner@meb.ki.se.
Similar articles
-
Multidimensional local false discovery rate for microarray studies.Bioinformatics. 2006 Mar 1;22(5):556-65. doi: 10.1093/bioinformatics/btk013. Epub 2005 Dec 20. Bioinformatics. 2006. PMID: 16368770
-
Estimation of false discovery proportion under general dependence.Bioinformatics. 2006 Dec 15;22(24):3025-31. doi: 10.1093/bioinformatics/btl527. Epub 2006 Oct 17. Bioinformatics. 2006. PMID: 17046978
-
Unequal group variances in microarray data analyses.Bioinformatics. 2008 May 1;24(9):1168-74. doi: 10.1093/bioinformatics/btn100. Epub 2008 Mar 14. Bioinformatics. 2008. PMID: 18344518
-
Classification based upon gene expression data: bias and precision of error rates.Bioinformatics. 2007 Jun 1;23(11):1363-70. doi: 10.1093/bioinformatics/btm117. Epub 2007 Mar 28. Bioinformatics. 2007. PMID: 17392326 Review.
-
[Multiple comparison procedures: principles, limits. Applications to microarray phenotype-genotype analysis].Rev Epidemiol Sante Publique. 2004 Dec;52(6):523-37. doi: 10.1016/s0398-7620(04)99092-x. Rev Epidemiol Sante Publique. 2004. PMID: 15741915 Review. French.
Cited by
-
Bias and misleading concepts in an Arnica research study. Comments to improve experimental Homeopathy.J Ayurveda Integr Med. 2018 Jan-Mar;9(1):75-80. doi: 10.1016/j.jaim.2017.01.014. Epub 2018 Feb 26. J Ayurveda Integr Med. 2018. PMID: 29496319 Free PMC article. Review.
-
PPARγ targeted oral cancer treatment and additional utility of genomics analytic techniques.Laryngoscope. 2017 Apr;127(4):E124-E131. doi: 10.1002/lary.26423. Epub 2016 Nov 29. Laryngoscope. 2017. PMID: 27896820 Free PMC article.
-
Combining a molecular profile with a clinical and pathological profile: biostatistical considerations.Scand J Urol Nephrol Suppl. 2008 Sep;(218):185-90. doi: 10.1080/03008880802283847. Scand J Urol Nephrol Suppl. 2008. PMID: 18815933 Free PMC article. Review.
-
MicroRNA modulate alveolar epithelial response to cyclic stretch.BMC Genomics. 2012 Apr 26;13:154. doi: 10.1186/1471-2164-13-154. BMC Genomics. 2012. PMID: 22537220 Free PMC article.
-
Global mapping of transcription factor motifs in human aging.PLoS One. 2018 Jan 2;13(1):e0190457. doi: 10.1371/journal.pone.0190457. eCollection 2018. PLoS One. 2018. PMID: 29293662 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous