Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 1;75(2):249-55.
doi: 10.1002/jbm.a.30301.

In vivo effects of RGD-coated titanium implants inserted in two bone-gap models

Affiliations

In vivo effects of RGD-coated titanium implants inserted in two bone-gap models

Brian Elmengaard et al. J Biomed Mater Res A. .

Abstract

RGD (Arg-Gly-Asp) coating has been suggested to enhance implant fixation by facilitating the adhesion of osteogenic cells to implant surfaces. Orthopedic implants are unavoidably surrounded partly by gaps, and these regions represent a challenging environment for osseointegration. We examined the effects of cyclic RGD-coated implants on tissue integration and implant fixation in two cancellous bone-gap models. In canines, we inserted loaded RGD-coated implants with 0.75-mm gap (n = 8) and unloaded RGD-coated implants with 1.5-mm gap (n = 8) into the distal femur and proximal tibia, respectively. Control gap implants without RGD were inserted contralaterally. The titanium alloy (Ti-6Al-4V) implants were plasma sprayed and cylindrical. The observation period was 4 weeks and the fixation was evaluated by push-out test and histomorphometry. Mechanical implant fixation was improved for RGD-coated implants. Unloaded RGD-coated implants showed a significant increase in bone whereas both loaded and unloaded implants showed a significant reduction in fibrous tissue anchorage. The results are encouraging, because RGD had an overall positive effect on the fixation of titanium implants in regions where gaps exist with the surrounding bone. RGD peptide coatings can potentially be used to enhance tissue integration in these challenging environments.

PubMed Disclaimer

Publication types

LinkOut - more resources