Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis
- PMID: 16107075
- DOI: 10.1007/0-387-25342-4_15
Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis
Abstract
Whole genome sequence data are increasingly available for a wide range of human pathogens. The use of bioinformatic tools allows the comprehensive in silico screening of genome data for surface-expressed proteins, in order to identify candidate vaccine antigens. In vitro confirmation of surface location and the use of animal models to test immunogenicity further refine the list of proteins likely to be of use as vaccine antigens. This process, first applied to serogroup B Neisseria meningitidis, has been termed as reverse vaccinology. Reverse vaccinology offers the ability to undertake a rapid and comprehensive assessment of a micro-organism's surface protein repertoire, and has advantages over conventional approaches to identifying candidate antigens. Despite the advantages of the approach, development in conventional areas of vaccinology remains important to support the process of producing vaccines from genome-derived antigens.
Similar articles
-
The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology.Front Immunol. 2019 Apr 16;10:751. doi: 10.3389/fimmu.2019.00751. eCollection 2019. Front Immunol. 2019. PMID: 31040844 Free PMC article. Review.
-
Approach to the Discovery, Development, and Evaluation of a Novel Neisseria meningitidis Serogroup B Vaccine.Methods Mol Biol. 2016;1403:445-69. doi: 10.1007/978-1-4939-3387-7_25. Methods Mol Biol. 2016. PMID: 27076147
-
Antigen identification starting from the genome: a "Reverse Vaccinology" approach applied to MenB.Methods Mol Biol. 2012;799:361-403. doi: 10.1007/978-1-61779-346-2_21. Methods Mol Biol. 2012. PMID: 21993656
-
Genetic shifts of Neisseria meningitidis serogroup B antigens and the quest for a broadly cross-protective vaccine.Expert Rev Vaccines. 2010 Oct;9(10):1203-17. doi: 10.1586/erv.10.116. Expert Rev Vaccines. 2010. PMID: 20923270 Review.
-
Genome-based vaccine development: a short cut for the future.Hum Vaccin. 2008 May-Jun;4(3):184-8. doi: 10.4161/hv.4.3.6313. Epub 2010 May 15. Hum Vaccin. 2008. PMID: 20686357 Review.
Cited by
-
Vaccine development to control the rising scourge of antibiotic-resistant Acinetobacter baumannii: a systematic review.3 Biotech. 2022 Mar;12(3):85. doi: 10.1007/s13205-022-03148-9. Epub 2022 Mar 2. 3 Biotech. 2022. PMID: 35261870 Free PMC article. Review.
-
Sustainable vaccine development: a vaccine manufacturer's perspective.Curr Opin Immunol. 2018 Aug;53:111-118. doi: 10.1016/j.coi.2018.04.019. Epub 2018 May 8. Curr Opin Immunol. 2018. PMID: 29751212 Free PMC article. Review.
-
A Natural Mouse Model for Neisseria Colonization.Infect Immun. 2018 Apr 23;86(5):e00839-17. doi: 10.1128/IAI.00839-17. Print 2018 May. Infect Immun. 2018. PMID: 29440372 Free PMC article.
-
In silico analysis and modeling of ACP-MIP-PilQ chimeric antigen from Neisseria meningitidis serogroup B.Rep Biochem Mol Biol. 2015 Oct;4(1):50-9. Rep Biochem Mol Biol. 2015. PMID: 26989750 Free PMC article.
-
Immunogenicity profiling of protein antigens from capsular group B Neisseria meningitidis.Sci Rep. 2019 May 2;9(1):6843. doi: 10.1038/s41598-019-43139-0. Sci Rep. 2019. PMID: 31048732 Free PMC article. Clinical Trial.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources