Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Mar;74(3):225-37.
doi: 10.1016/0300-9084(92)90121-t.

Role of the calpain system in muscle growth

Affiliations
Review

Role of the calpain system in muscle growth

D E Goll et al. Biochimie. 1992 Mar.

Abstract

Muscle protein degradation has an important role in rate of muscle growth. It has been difficult to develop procedures for measuring rate of muscle protein degradation in living animals, and most studies have used in vitro systems and muscle strips to determine rate of protein degradation. The relationship between results obtained by using muscle strips and rate of muscle protein turnover in living animals is unclear because these strips are in negative nitrogen balance and often develop hypoxic cores. Also, rate of protein degradation is usually estimated by release of labeled amino acids, which reflects an average rate of degradation of all cellular proteins and does not distinguish between rates of degradation of different groups of proteins such as the sarcoplasmic and the myofibrillar proteins in muscle. A number of studies have suggested that the calpain system initiates turnover of myofibrillar proteins, which are the major group of proteins in striated muscle, by making specific cleavages that release thick and thin filaments from the surface of the myofibril and large polypeptide fragments from some of the other myofibrillar proteins. The calpains do not degrade myofibrillar proteins to small peptides or to amino acids, and they cause no bulk degradation of sarcoplasmic proteins. Hence, the calpains are not directly responsible for release of amino acids during muscle protein turnover. Activity of the calpains in living cells is regulated by calpastatin and Ca2+, but the nature of this regulation is still unclear.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources