Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Sep;49(2):227-41.
doi: 10.1016/j.brainresrev.2004.12.034.

The molecular orchestra of the migration of oligodendrocyte precursors during development

Affiliations
Review

The molecular orchestra of the migration of oligodendrocyte precursors during development

Fernando de Castro et al. Brain Res Brain Res Rev. 2005 Sep.

Abstract

During development of the central nervous system (CNS), postmitotic cells (including neurons and myelin-generating cells, the oligodendrocytes) migrate from the germinal areas of the neural tube where they originate to their final destination sites. The migration of neurons during development has been extensively studied and has been the topic of detailed reviews. The migration of oligodendrocyte precursor cells (OPCs) is also an extremely complex and precise event, with a widespread migration of OPCs across many regions to colonize the entire CNS. Different mechanisms have been shown to direct the migration of OPCs, among them contact-mediated mechanisms (adhesion molecules) and long-range cues (chemotropic molecules). This review provides a detailed overview and discussion of the cellular and molecular basis of OPCs migration during development. Because it has been shown that neuronal and oligodendroglial lineages share some of these mechanisms, we briefly summarize similarities and differences between these two types of neural cells. We also summarize the changes in the normal migration of OPCs during development that would be relevant for different neurological diseases (including demyelinating diseases, such as multiple sclerosis, and glial cancers). We also examine the relevance of these migratory properties of the oligondendrocytic cell lineage for the repair of neural damage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources