Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 31;1752(1):18-25.
doi: 10.1016/j.bbapap.2005.07.016.

Elevated expression temperature in a mesophilic host results in increased secretion of a hyperthermophilic enzyme and decreased cell stress

Affiliations

Elevated expression temperature in a mesophilic host results in increased secretion of a hyperthermophilic enzyme and decreased cell stress

Jason D Smith et al. Biochim Biophys Acta. .

Abstract

Efficient protein folding and trafficking are essential for high-level production of secretory proteins. Slow folding or misfolding of proteins can lead to secretory bottlenecks that reduce productivity. We previously examined the expression of a hyperthermophilic tetramer Pyrococcus furiosus beta-glucosidase in the yeast Saccharomyces cerevisiae. A secretory bottleneck was found in the endoplasmic reticulum, presumably due to beta-glucosidase misfolding. By increasing expression temperature from 30 degrees C up to 40 degrees C, secretion yields increased by as much as 440% per cell to greater than 100 mg/L at 37 degrees C. We examined the effect of temperature on beta-glucosidase folding and secretion and determined that increased expression temperature decreased intracellularly retained, insoluble beta-glucosidase. Likewise, stress on the cell caused by beta-glucosidase expression was found to be greatly reduced at 37 degrees C compared to 30 degrees C. Levels of the abundant endoplasmic reticulum chaperone, BiP, were relatively unchanged at these temperatures during heterologous expression. Using cycloheximide to inhibit new protein synthesis, we determined that the increase in secretion is likely due to the effect of temperature on the beta-glucosidase itself rather than the cell's response to elevated temperatures. We believe that this is the first evidence of in vivo effects of temperature on the secretion of hyperthermophilic proteins.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources