Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Oct;28(10):552-61.
doi: 10.1016/j.tins.2005.08.005.

Tuning the network: modulation of neuronal microcircuits in the spinal cord and hippocampus

Affiliations
Review

Tuning the network: modulation of neuronal microcircuits in the spinal cord and hippocampus

Fiona E N LeBeau et al. Trends Neurosci. 2005 Oct.

Abstract

Adaptation of an organism to its changing environment ultimately depends on the modification of neuronal activity. The dynamic interaction between cellular components within neuronal networks relies on fast synaptic interaction via ionotropic receptors. However, neuronal networks are also subject to modulation mediated by various metabotropic G-protein-coupled receptors that modify synaptic and neuronal function. Modulation increases the functional complexity of a network, because the same cellular components can produce different outputs depending on the behavioural state of the animal. This review, which is part of the TINS Microcircuits Special Feature, provides an overview of neuromodulation in two neuronal circuits that both produce oscillatory activity but differ fundamentally in function. Hippocampal circuits are compared with the spinal networks generating locomotion, with a view to exploring common principles of neuromodulatory activity.

PubMed Disclaimer

Publication types