Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 May;17(2):263-8.
doi: 10.1016/0169-6009(92)90748-3.

Cell maturation-specific autocrine/paracrine regulation of matrix vesicles

Affiliations
Review

Cell maturation-specific autocrine/paracrine regulation of matrix vesicles

B D Boyan et al. Bone Miner. 1992 May.

Abstract

Matrix vesicles are extracellular organelles produced with distinctive phospholipid composition and enzyme activity. They are produced by cells which typically calcify their extracellular matrix and their characteristics are cell-maturation dependent. Regulation of matrix vesicle structure and function occurs at the genomic and non-genomic levels. By following alkaline phosphatase gene transcription, protein concentration, and enzyme specific activity, we have shown that steroid hormones and growth factors exhibit a regulatory influence over gene transcription, protein synthesis, and matrix vesicle activity. Matrix vesicles respond to peptide hormones, other matrix proteins, like alpha 2-HS-glycoprotein, and autocoid mediators as well. Matrix vesicle metabolism can be directly affected by vitamin D metabolites, even in the absence of cells. The results indicate that 1,25-(OH)2D3(1,25D) or 24,25-(OH)2D3(24,25D) produced by the cells in culture can modulate matrix vesicle activity, and suggest that calcifying cells can modulate events in the matrix via autocrine/paracrine stimulation or inhibition of the matrix vesicles. 1,25D and 24,25D regulate matrix vesicle phospholipase A2 activity, fatty acid turnover, arachidonic acid release, PGE2 production and membrane fluidity, which act on the matrix vesicle to alter enzyme activity. Since vitamin D metabolite production is sensitive to both hormones and growth factors, there is potential for fine tuning matrix vesicle behavior.

PubMed Disclaimer

Similar articles

LinkOut - more resources