HLA-A2 supertype-restricted cell-mediated immunity by peripheral blood mononuclear cells derived from Malian children with severe or uncomplicated Plasmodium falciparum malaria and healthy controls
- PMID: 16113298
- PMCID: PMC1231120
- DOI: 10.1128/IAI.73.9.5799-5808.2005
HLA-A2 supertype-restricted cell-mediated immunity by peripheral blood mononuclear cells derived from Malian children with severe or uncomplicated Plasmodium falciparum malaria and healthy controls
Abstract
Understanding HLA-restricted adaptive host immunity to defined epitopes of malarial antigens may be required for the development of successful malaria vaccines. Fourteen epitopes of preerythrocytic malarial antigens known to mediate cytotoxic T-lymphocyte responses against target cells expressing HLA-A2-restricted epitopes were synthesized and pooled based on antigen: thrombospondin-related anonymous protein (TRAP), circumsporozoite protein (CSP), and export protein 1 (Exp-1) peptides. HLA-A2 supertype (*0201, *0202, *0205, *6802) peripheral blood mononuclear cells collected from 774 Malian children, aged 3 months to 14 years, with severe Plasmodium falciparum malaria matched to uncomplicated malaria or healthy controls were stimulated with the HLA-A2-restricted peptide pools. Significant gamma interferon production, determined by enzyme-linked immunospot assay to at least one of the three peptide pools, was observed in 24/58 (41%) of the severe malaria cases, 24/57 (42%) of the uncomplicated malaria cases, and 34/51 (67%) of the healthy controls. Significant lymphoproliferation to these peptides was observed in 12/44 (27%) of the severe malaria cases, 13/55 (24%) of the uncomplicated malaria cases, and 18/50 (36%) of the healthy controls. Responses to individual peptide pools were limited. These studies confirm the presence of adaptive cell-mediated immunity to preerythrocytic malaria antigens in volunteers from Mali and demonstrate that suballeles of the HLA-A2 supertype can effectively present antigenic epitopes. However, whether these immune responses to TRAP, CSP, and Exp-1 malarial proteins play a substantial role in protection remains a matter of controversy.
Figures
References
-
- Aidoo, M., A. Lalvani, C. E. Allsopp, M. Plebanski, S. J. Meisner, P. Krausa, M. Browning, S. Morris-Jones, F. Gotch, and D. A. Fidock. 1995. Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet 345:1003-1007. - PubMed
-
- Blum-Tirouvanziam, U., C. Servis, A. Habluetzel, D. Valmori, Y. Men, F. Esposito, L. Del Nero, N. Holmes, N. Fasel, and G. Corradin. 1995. Localization of HLA-A2.1-restricted T cell epitopes in the circumsporozoite protein of Plasmodium falciparum. J. Immunol. 154:3922-3931. - PubMed
-
- Brasseur, P., M. Agrapart, J. J. Ballet, P. Druilhe, M. J. Warrell, and S. Tharavanij. 1983. Impaired cell-mediated immunity in Plasmodium falciparum-infected patients with high-parasitemia and cerebral malaria. Clin. Immunol. Immunopathol. 27:38-50. - PubMed
-
- Cao, K., M. Chopek, and M. A. Fernandez-Vina. 1999. High and intermediate resolution DNA typing systems for class I HLA-A, B, C genes by hybridization with sequence-specific oligonucleotide probes (SSOP). Rev. Immunogenet. 1:177-208. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
