Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Aug-Sep;21(8-9):747-52.
doi: 10.1051/medsci/2005218-9747.

[Roles of aquaporins in the brain]

[Article in French]
Affiliations
Free article
Review

[Roles of aquaporins in the brain]

[Article in French]
Céline F Guérin et al. Med Sci (Paris). 2005 Aug-Sep.
Free article

Abstract

It is now over 10 years ago that aquaporin 1 (AQP1) was discovered and cloned from the red blood cells, and in 2003 the Nobel price in Chemistry was awarded to Pr. Peter Agre for his work on AQPs, highlighting the importance of these proteins in life sciences. AQPs are water channels. To date this protein family is composed of 11 sub-types in mammalians. Three main AQPs described in the mammalian brain are AQP1, AQP4 and AQP9. Several recent studies have shown that these channels are implicated in numerous physiological functions. AQP1 has a role in cerebrospinal fluid formation, whereas AQP4 is involved in water homeostasis and extracellular osmotic pressure in brain parenchyma. AQP4 seems also to have an important function in oedema formation after brain trauma or brain ischemia. AQP9 is implicated in brain energy metabolism. The level of expression of each AQP is highly regulated. After a trauma or an ischemia perturbation of the central nervous system, the level of expression of each AQP is differentially modified, resulting in facilitating oedema formation. At present, the exact role of each AQP is not yet determined. A better understanding of the mechanisms of AQP regulation should permit the development of new pharmacological strategies to prevent oedema formation. AQP9 has been recently specifically detected in the catecholaminergic neurons of the brain. This new result strengthens the hypothesis that the AQPs are not only water channels, but that some AQPs may play a role in energy metabolism as metabolite channels.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources