Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Sep 30;1745(3):342-9.
doi: 10.1016/j.bbamcr.2005.04.003.

Divergent regulation of Pyk2/CAKbeta phosphorylation by Ca2+ and cAMP in the hippocampus

Affiliations
Free article
Comparative Study

Divergent regulation of Pyk2/CAKbeta phosphorylation by Ca2+ and cAMP in the hippocampus

K A Alier et al. Biochim Biophys Acta. .
Free article

Abstract

Proline-rich tyrosine kinase 2 (Pyk2) is activated in neurones following NMDA receptor stimulation via PKC. Pyk2 is involved in hippocampal LTP and acts to potentiate NMDA receptor function. Elevations of intracellular Ca2+ and cAMP levels are key NMDA receptor-dependent triggering events leading to induction of hippocampal LTP. In this study, we compared the ability of A23187 (Ca2+ ionophore) or forskolin (adenylate cyclase activator) to modulate the phosphorylation of Pyk2 in rat hippocampal slices. Using an immunoprecipitation assay, phosphorylated Pyk2 levels were increased following treatment with A23187, levels peaking at around 10 min. Staurosporine, at concentrations inhibiting conventional and novel isoforms of PKC, and chelerythrine, at concentrations inhibiting the atypical PKC isoform PKMxi, were compared for their ability to attenuate the effect of A23187. Exposure of acute hippocampal slices to either chelerythrine or staurosporine completely blocked enhanced phosphorylation of Pyk2 by A23187, suggesting a possible involvement of PKMxi and typical PKCs in Pyk2 activation by Ca2+. In contrast, application of forskolin reduced phosphorylated Pyk2 below basal levels, suggesting that cAMP inhibits Pyk2. These results implicate Ca2+ and multiple forms of PKC in the activation of Pyk2 downstream of NMDA receptors and suggest that cAMP-dependent processes exert a suppressive action on Pyk2.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources