Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2005 Sep;46(9):3052-9.
doi: 10.1167/iovs.05-0111.

Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles

Affiliations
Multicenter Study

Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles

Jana Zernant et al. Invest Ophthalmol Vis Sci. 2005 Sep.

Abstract

Purpose: Leber congenital amaurosis (LCA) is an early-onset inherited disorder of childhood blindness characterized by visual impairment noted soon after birth. Variants in at least six genes (AIPL1, CRB1, CRX, GUCY2D, RPE65, and RPGRIP1) have been associated with a diagnosis consistent with LCA or early-onset retinitis pigmentosa (RP). Genetically heterogeneous inheritance complicates the analyses of LCA cases, especially in patients without a family history of the disorder, and conventional methods are of limited value.

Methods: To overcome these limitations, arrayed primer extension (APEX) technology was used to design a genotyping microarray for early-onset, severe retinal degenerations that includes all of the >300 disease-associated variants currently described in eight genes (in addition to the six just listed, the early-onset RP genes LRAT and MERTK were added). The resultant LCA array allows simultaneous detection of all known disease-associated alleles in any patient with early-onset RP. The array was validated by screening 93 confirmed patients with LCA who had known mutations. Subsequently, 205 novel LCA cases were screened on the array, followed by segregation analyses in families, if applicable.

Results: The microarray was >99% effective in determining the existing genetic variation and yielded at least one disease-associated allele in approximately one third of the novel patients. More than two (expected) variants were discovered in a substantial fraction (22/300) of the patients, suggesting a modifier effect from more than one gene. In support of the latter hypothesis, the third allele segregated with a more severe disease phenotype in at least five families.

Conclusions: The LCA genotyping microarray is a robust and cost-effective screening tool, representing the prototype of a disease chip for genotyping patients with a genetically heterogeneous condition. Simultaneous screening for all known LCA-associated variants in large LCA cohorts allows systematic detection and analysis of genetic variation, facilitating prospective diagnosis and ultimately predicting disease progression.

PubMed Disclaimer

Publication types