Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:6:185-216.
doi: 10.1146/annurev.genom.6.080604.162132.

The genetic basis for cardiac remodeling

Affiliations
Review

The genetic basis for cardiac remodeling

Ferhaan Ahmad et al. Annu Rev Genomics Hum Genet. 2005.

Abstract

Cardiomyopathies are primary disorders of cardiac muscle associated with abnormalities of cardiac wall thickness, chamber size, contraction, relaxation, conduction, and rhythm. They are a major cause of morbidity and mortality at all ages and, like acquired forms of cardiovascular disease, often result in heart failure. Over the past two decades, molecular genetic studies of humans and analyses of model organisms have made remarkable progress in defining the pathogenesis of cardiomyopathies. Hypertrophic cardiomyopathy can result from mutations in 11 genes that encode sarcomere proteins, and dilated cardiomyopathy is caused by mutations at 25 chromosome loci where genes encoding contractile, cytoskeletal, and calcium regulatory proteins have been identified. Causes of cardiomyopathies associated with clinically important cardiac arrhythmias have also been discovered: Mutations in cardiac metabolic genes cause hypertrophy in association with ventricular pre-excitation and mutations causing arrhythmogenic right ventricular dysplasia were recently discovered in protein constituents of desmosomes. This considerable genetic heterogeneity suggests that there are multiple pathways that lead to changes in heart structure and function. Defects in myocyte force generation, force transmission, and calcium homeostasis have emerged as particularly critical signals driving these pathologies. Delineation of the cell and molecular events triggered by cardiomyopathy gene mutations provide new fundamental knowledge about myocyte biology and organ physiology that accounts for cardiac remodeling and defines mechanistic pathways that lead to heart failure.

PubMed Disclaimer

Publication types

LinkOut - more resources