Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Sep 28;1057(1-2):161-7.
doi: 10.1016/j.brainres.2005.07.053.

GABAergic modulation mediates antinociception produced by serotonin applied into thalamic nucleus submedius of the rat

Affiliations
Comparative Study

GABAergic modulation mediates antinociception produced by serotonin applied into thalamic nucleus submedius of the rat

Dan-Qin Xiao et al. Brain Res. .

Abstract

Our previous studies have indicated that the thalamic nucleus submedius (Sm) is involved in modulation of nociception as part of an ascending component of an endogenous analgesic system consisting of spinal cord-Sm-ventrolateral orbital cortex (VLO)-periaqueductal gray (PAG)-spinal cord loop and that microinjection of 5-hydroxytryptamine (5-HT) into Sm produces antinociception. The aim of the present study was to examine whether the gamma-aminobutyric acid (GABA)ergic modulation is involved in the Sm 5-HT-evoked antinociception. Experiments were carried out on lightly anesthetized rats with an implanted cannula targeting the Sm nucleus. The microinjection of GABA(A) receptor antagonist bicuculline dose-dependently depressed the tail flick (TF) reflex. A smaller dose (100 ng) of bicuculline enhanced the inhibition of TF reflex produced by 5-HT application into Sm, whereas application of GABA (2.5 microg) did not influence the TF reflex but significantly attenuated the 5-HT-evoked inhibition. These results indicate that GABA(A) receptor may be involved in mediating the 5-HT-induced antinociception in Sm possibly through a disinhibition mechanism.

PubMed Disclaimer

Publication types

LinkOut - more resources