Effects of alveolar dead-space, shunt and V/Q distribution on respiratory dead-space measurements
- PMID: 16126784
- DOI: 10.1093/bja/aei212
Effects of alveolar dead-space, shunt and V/Q distribution on respiratory dead-space measurements
Abstract
Background: Respiratory dead-space is often increased in lung disease. This study evaluates the effects of increased alveolar dead-space (Vd(alv)), pulmonary shunt, and abnormal ventilation perfusion ratio (/) distributions on dead-space and alveolar partial pressure of carbon dioxide (Pa(co(2))) calculated by various methods, assesses a recently published non-invasive method (Koulouris method) for the measurement of Bohr dead-space, and evaluates an equation for calculating physiological dead-space (Vd(phys)) in the presence of pulmonary shunt.
Methods: Pulmonary shunt, / distribution and Vd(alv) were varied in a tidally breathing cardiorespiratory model. Respiratory data generated by the model were analysed to calculate dead-spaces by the Fowler, Bohr, Bohr-Enghoff and Koulouris methods. Pa(co(2)) was calculated by the method of Koulouris.
Results: When Vd(alv) is increased, Vd(phys) can be recovered by the Bohr and Bohr-Enghoff equations, but not by the Koulouris method. Shunt increases the calculated Bohr-Enghoff dead-space, but does not affect Fowler, Bohr or Koulouris dead-spaces, or Vd(phys) estimated by the shunt-corrected equation if pulmonary artery catheterization is available. Bohr-Enghoff but not Koulouris or Fowler dead-space increases with increasing severity of / maldistribution. When alveolar Pco(2) is increased by any mechanism, Pa(co(2)) calculated by Koulouris' method does not agree well with average alveolar Pco(2).
Conclusions: Our studies show that increased pulmonary shunt causes an apparent increase in Vd(phys), and that abnormal / distributions affect the calculated Vd(phys) and Vd(alv), but not Fowler dead-space. Dead-space and Pa(co(2)) calculated by the Koulouris method do not represent true Bohr dead-space and Pa(co(2)) respectively, but the shunt-corrected equation performs well.
Comment in
-
Deadspace: invasive or not?Br J Anaesth. 2006 Jan;96(1):4-7. doi: 10.1093/bja/aei289. Br J Anaesth. 2006. PMID: 16357115 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
