Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct 14;336(1):197-203.
doi: 10.1016/j.bbrc.2005.08.060.

Anti-analgesia of a selective NPFF2 agonist depends on opioid activity

Affiliations

Anti-analgesia of a selective NPFF2 agonist depends on opioid activity

Anne Roussin et al. Biochem Biophys Res Commun. .

Abstract

NPFF agonists designed to be selective NPFF(2) receptor probes were synthesized. D.Asn-Pro-(N-Me)Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH(2) (dNPA) displays a very high affinity (0.027nM) for NPFF(2) receptors transfected in CHO cells, and a very high selectivity with a discrimination ratio greater than 100 versus NPFF(1) receptors. dNPA acts as a potent and selective agonist in [(35)S]GTPgammaS binding experiments and inhibits intracellular cAMP production with the same efficacy as NPA-NPFF. In SH-SY5Y cells expressing NPFF(2) receptors dNPA, in the presence of carbachol, stimulates Ca(2+) release from the intracellular stores. In vivo, after intracerebroventricular injection dNPA increases body temperature in mice and reverses the morphine-induced analgesia. Also, dNPA displays anti-opioid activity after systemic administration. So far, dNPA exhibits the highest affinity and selectivity for NPFF(2) receptors and reveals that its behavioral anti-opioid activity depends on the degree of opioid-induced analgesia.

PubMed Disclaimer

Publication types