Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;70(2):222-8.
doi: 10.1007/s00253-005-0064-0. Epub 2005 Aug 17.

Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus

Affiliations

Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus

Luan Tao et al. Appl Microbiol Biotechnol. 2006 Mar.

Abstract

Rhodococcus erythropolis naturally synthesizes monocyclic carotenoids: 4-keto-gamma-carotene and gamma-carotene. The genes and the pathway for carotenoid synthesis in R. erythropolis were previously described. We heterologously expressed a beta-carotene desaturase gene (crtU) from Brevibacterium in Rhodococcus to produce aryl carotenoids such as chlorobactene. Expression of the crtU downstream of a chloramphenicol resistance gene on pRhBR171 vector showed higher activity than expression downstream of a native 1-deoxyxylulose-5-phosphate synthase gene (dxs) on pDA71 vector. Expression of the crtU in the beta-carotene ketolase (crtO) knockout Rhodococcus host produced higher purity chlorobactene than expression in the wild-type Rhodococcus host. Growth of the engineered Rhodococcus strain in eight different media showed that nutrient broth yeast extract medium supplemented with fructose gave the highest total yield of chlorobactene. This medium was used for growing the engineered Rhodococcus strain in a 10-l fermentor, and approximately 18 mg of chlorobactene was produced as the almost exclusive carotenoid by fermentation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources